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CHAPTER I. INTRODUCTION 

The Need 

The objective of this thesis is to systematically develop an analyti­

cal technique to simulate the operation of a pulsed ultrasound system in­

corporating an A-scan display. Such systems are currently finding wide­

spread use in biomedical engineering applications as a noninvasive diag­

nostic tool. 

It was while working on the design of a new instrument in this area 

that the author first became aware of the need for such an analysis tech­

nique. The need becomes more evident when one considers the nature of 

some of the problems encountered in designing such systems. 

All A-scan ultrasound systems yield information in terms of the 

magnitude of, and the time delay associated with, reflected pulses. The 

time delay is the time required for a pulse to propagate to and from an 

acoustic discontinuity while the magnitude of the pulse is proportional to 

the "nature" of the discontinuity. For example, such discontinuities 

exist at the boundaries of dissimilar mediums such as fat and muscle or 

muscle and bone. This information is typically displayed on a cathode ray 

tube with the horizontal axis proportional to time and the vertical axis 

proportional to magnitude. The operator or designer of a system must then 

interpret this output in order to deriv the information needed for the 

particular application. Herein lies the problem; a designer needs 

a priori knowledge of the A-scan that will be produced in a proposed 
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application to know how difficult it is to uniquely associate the return 

pulses with particular boundaries. A simple example in this area should 

suffice to make this point clear. 

The author has been involved with the design of a pulsed ultrasound 

system to measure lateral curvature of the spine. The approach used 

called for a plot to be made of the location of each of the vertebra 

relative to a fixed point. It was thought that a distinctive A-scan would 

be produced whenever the ultrasonic transducer was located directly over a 

tall boney vertebral protrusion called the splnuous process. This signal 

was to be identified by an electronic sensing circuit which would signal 

the instrument that the transducer was presently located over the center 

of a vertebra. Thus, by making a two-dimensional plot of the location of 

the transducer at these times one would eventually produce a graph which 

would contain the necessary information pertaining to the lateral dis­

placement of vertebrae relative to one another. 

The feasibility of such an approach is primarily dependent on the 

ease with which the splnuous process can be identified with an A-scan 

presentation, and, at present, the feasibility studies would have to be 

experimental in nature. Questions pertaining to the particular choice of 

a transducer, amplifier gain characteristics and many more parameters have 

to be worked out experimentally because no simple analytical techniques 

are available to simulate the operation of the system. 

The techniques developed in this work go a long way towards remedy­

ing this problem. They represent a viable way of modeling an A-scan 

pulsed ultrasound system when simple reflection is the primary source of 
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the returned signal. The model includes such practical considerations as 

lateral translation and small angular rotation of the source with respect 

to the reflecting surface and allows variation of the radiated field dis­

tribution as well as variation of amplifer gain characteristics. In its 

present form, it provides a computer generated A-scan plot as its final 

output and is cheaper and faster than conducting the studies experimentally. 

The most formidable part of generating the A-scan output is concerned 

with predicting the characteristics of pulses reflected off a regular or 

irregularly shaped object. A review of the literature at this point re­

veals little that would be helpful in solving this problem. 

Literature Review 

Over the years a variety of people have been concerned with analyti­

cal predications of reflected pulses, for a variety of reasons. A com­

pletely general algorithm has not been developed and, in every case, the 

investigators have taken advantage of certain simplifying assumptions that 

are consistent with the nature of their problem. They do, however, have 

one thing in common. They are primarily Interested In either the exact 

shape of the reflected pulses, or the spectral content of the reflected 

pulses. This differs from the problem being considered in that the exact 

shape of the signal is not important in an A-scan, only the magnitude and 

approximate duration of a pulse are relevant. 

It should be pointed out that determining the exact shape of a re­

flected pulse is a considerably more difficult problem, in general, than 

merely determining its magnitude and approximate duration. Thus, existing 
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techniques, when applicable, prove to be far more involved computationally 

than desired. This topic will be discussed in the literature review section. 

A. Freedman (1) appears to have been concerned with underwater target 

identification when he developed his reflection algorithm for both con­

tinuous and pulsed waves. The technique requires the determination of 

discontinuities in a function, defined by the rate of change of solid 

angle with respect to distance, and in its higher order spatial deriva­

tives. He applied the technique successfully to certain simple shapes 

(2) but it would be very difficult to apply this technique to any surface 

not easily describable in functional form. 

D. M. Johnson (3) was involved with ultrasonic spectroscopy problems 

when he developed his Fourier transform technique for point sources by 

transforming the summation formula derived by W. G. Neubauer (4) for con­

tinuous wave reflection problems. Although the techniques can be applied 

to a wide variety of reflectors it does not consider finite size sources 

and furthermore the author states that it would not be possible to do so 

using his techniques, except possibly for certain simple geometries. In 

addition, the technique, as it stands, is quite complex computationally. 

The remainder of the reflection algorithms found in the literature 

are limited to consideration of pulses reflected off plane surfaces or off 

certain simple shapes such as spheres and cylinders and are not applicable 

to irregular geometries. Examples of work done with pulses reflecting off 

planes can be found in the works of Ivanov (5,6,7,8), who transformed the 

problem to an integration in the complex plane, or in the works of 

Abramowitz (9), Towne (10,11), Cron and Nuttall (12), or Duykers (13). 
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Pulses reflected off cylinders were considered by Friedlander (14,15) and 

Forghieri (16) while similar problems for a sphere were considered by 

Metsaveer (17), Rudgers (18) and Hickling (19,20). These investigators 

used a variety of approaches ranging from classical boundary value problem 

methods to integral transform techniques. 

The literature review that was conducted has lead to the following 

conclusions: (1) with the possible exception of the works by Freedman and 

Johnson, none of the methods discussed can be used to solve the required 

pulse reflection problem and (2) these methods, if applicable, would be 

unacceptable simply because they would require more time and expense than 

the experimental approach of solving the design problems. Thus, it ap­

pears that a new method is called for, one that is optimized for the de­

termination of the magnitude and duration of the reflected pulse and one 

that would be considerably cheaper and faster than existing techniques. 

This thesis is primarily concerned with the development of a pulse 

reflection algorithm derived from fundamental principles. The development 

is made with a view towards its theoretical justification and with a view 

towards the elucidation of all the inherent assumptions made in arriving 

at the result. It is felt that engineering is, to a large degree, con­

cerned with the intelligent application of mathematical models and thus it 

is prudent to make the prospective user of an algorithm familiar with all 

of the limitations imposed by the assumptions made in arriving at the re­

sult. 

With these facts in mind. Chapter II is devoted to the discussion of 

the wave equations which will be used to described the propagation of an 



www.manaraa.com

6 

acoustical pulse in different media. Chapter III deals with the develop­

ment of the necessary solutions to the wave equations. Chapter IV is de­

voted to the derivation of a useful reflection integral while Chapter V 

deals with the development of a computer algorithm to solve the reflection 

integral. Chapter V also includes the results of certain experiments 

which were designed to test the validity of the approach. Finally, con­

clusions are drawn and recommendations for future work are made in Chapter 

VI. 

In concluding this introductory chapter, it should be pointed out 

that the material has been developed and presented in a format that will 

hopefully be of maximum utility to workers in biomedical ultrasonics. 

Biomedical engineering is an interdisciplinary science that often requires 

its workers to solve problems in areas for which they have little formal 

training. Quite often, attempts to gain the necessary knowledge are 

frustrated by one's inability to find suitable tutorial material. For 

example, in studying material related to the theory of sound, most ele­

mentary presentations were too restrictive while the advanced presenta­

tions were more general than needed. Difficulty arises in deciding ex­

actly what principles and techniques need to be thoroughly understood and 

then extracting this information from the general body of knowledge. Much 

of the work done in arriving at the results in this thesis was concerned 

with these types of problems. Thus, an attempt has been made to present 

some of the material in a tutorial fashion. Hopefully this thesis can, 

in addition to its other objectives, serve as a starting point to those 
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who wish to acquaint themselves with the aspects of acoustical theory 

which are most likely to be of use to them in addressing a wide variety 

of problems in biomedical ultrasonics. 
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CHAPTER II. FUNDAMENTAL EQUATIONS OF SOUND 

The prime objective of this chapter is to develop the equations 

necessary to describe the propagation of sound in either fluids or solids. 

Such a development proceeds quite readily from three other equations which 

are obtained from the applications of the principles of conservation of 

mass, momentum and energy. The applications are made in a manner that 

will allow the concurrent development of the wave equations for both 

fluids and solids. This approach differs from most standard developments 

of these equations and was chosen in order to emphasize the concepts com­

mon to both and to simplify the mathematical transition from one type of 

medium to the other. 

The common approach taken in developing a wave equation for fluids is 

to use conservation equations stated in terms of density, pressure and 

particle velocity to derive a wave equation for one of the latter two 

variables. In the case of solids, pressure must be replaced by stress and 

particle velocity by particle displacement. This leads to a wave equation 

for particle displacement. The development for solids is obviously more 

complicated than it is for fluids since pressure, a scalar quantity, has 

been replaced by a rank two tensor, stress. For this reason many authors 

choose to assume a stress-strain (i.e., particle displacement) relation­

ship and a simplified form of the momentum equation as the starting point 

and proceed to develop their equations from these relationships. 

In contrast, this chapter will present mathematical statements of the 

conservation equations in terms of stress, particle displacement, particle 

velocity and density. When stated in this form these equations can be 
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used to derive wave equations which can be applied to a wide variety of 

fluids and solids. 

It should be noted, at this point, that the reader's attention is 

being directed towards fluids and solids because these are the two en­

vironments in which A-scan ultrasound systems are used. However, the de­

velopment itself is not limited to these mediums. With a suitable sub­

stitution of certain constants, equations applicable to gases could also 

be derived and a wave equation valid for anisotropic media is also de­

veloped in the process of arriving at the final results. 

In the interest of simplicity, references have been cited to justify 

some of the less important relationships. Within the chapter itself, only 

key concepts and equations will be stated and discussed. 

Conservation Equations 

To begin this discussion it is noted that the correct interpretation 

and application of the various equations is dependent upon a proper under­

standing of the coordinate system or systems used in arriving at a par­

ticular equation. 

The situation is complicated because of the nature of the various 

descriptions needed. For example, one is sometimes interested in the 

velocity at a particular point in a body. One is not concerned with what 

particle is at that point, one only wants to know the velocity of whatever 

particle happens to occupy that space at some instant in time. The de­

scription of the velocity at every point inside the body as a function of 

time in such a case would be called a spatial description. On the other 
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hand the interest is sometimes in the velocity of a particular particle as 

a function of time and one is willing to follow the particle as it moves 

from point to point inside the body. A description of velocity, as a 

function of time, for every particle inside the body would be called, in 

this case, a material description. 

Material and spatial descriptions 

Picture a fixed Cartesian coordinate system with axes a^, 1=1, 2, 

3. At some reference time t^, every point inside a body will be identi­

fied by a particular vector a^. Now consider another Cartesian coordinate 

system with the same origin and with the same orientation as the first, 

with axes x^, 1=1, 2, 3. At some arbitrary time t, a point initially at 

a^ will be located at x^. Thus, at any time t each a^ can be associated 

with an x^ by the functional relationship 

*1 = x^(t, a^, a^, a^) (2.1) 

This relationship, when evaluated at t^, will yield the initial position 

of the point. 

^1 a^, ag, a^) (2.2) 

If one fixes the material coordinates a^ in equation (2.1), then x^ 

denotes the time-dependent coordinates of the particular point initially 

at a^. The coordinates of any particular point depend only on time, the 

value of a^ merely states which point is under consideration. Under those 

conditions the ordinary derivative with respect to time of x^ would define 

the velocity of a particular point. 
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dx 9x 

= "l = "âT ' ".3) 

Since a particular particle is being considered, this is actually a par­

tial derivative with a^, a^, a^ held constant. 

A point which always moves with the material is called a particle or 

material point. Lines or surfaces composed of particles are called 

material lines or surfaces. The material inside a closed material surface 

is called a body. 

Another concept that is important in the developments which follow is 

the variation of a scalar field quantity with respect to time. The mathe­

matical statement of this idea depends on whether one is interested in the 

time variation at a point (spatial derivative) or the time variation fol­

lowing a particle (material derivative). In most cases the scalar field 

quantity is described in spatial coordinates, therefore the spatial and 

material derivative will only be defined for a quantity described in this 

manner. 

Let F(t; x^, x^, x^) be a general scalar field quantity, which is 

described in spatial coordinates. The spatial derivative of the function 

is simply the partial derivative of F with respect to time. In order to 

define the material derivative, x^ is no longer treated as independent but 

is related to the material coordinates by substituting equation (2.1) into 

F. To determine the variation of this function with respect to time, for 

a specific particle, one fixes the value of a^ and applies the chain rule 

to obtain, with the help of equation (2.3): 
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p = #  =  a+v i l  
dt 3t ^1 3x 

(2.4) 

1 

The expression 3F/9t Is that part of the material derivative resulting 

from the change of F with respect to time at a fixed point, and v^3F/3x^ 

is the part resulting from the motion of the particle in a field F whose 

value varies from point to point. So far attention has been directed 

towards the variation of an arbitrary scalar field quantity with respect 

to time for a particular particle. In order to apply the principles of 

conservation of mass, momentum and energy, it will be necessary to talk 

about the time variation of a property of a body, which is defined by a 

surface composed of a collection of particles. 

Consider a collection of particles defining a volume = Vft^) at 

time t^, which by virtue of equation (2.1) would occupy a different volume 

V = V(t) at some later time t. Let F(t, x^, x^, x^) now be a scalar 

material property referred to a unit volume. Then 

dV = dx^dxgdxg 

is a property of the body which can be evaluated at any time t. The 

easiest way to evaluate this integral, at a specific time t, is to trans­

form the integral to an integration over the material coordinates. 

P(t) = ^ F(t, x^(t, a^, a^, ag), X2(t, a^, a^, a^), ayft, a^.a^.a^)) 

P(t) = ^ F(t, x^, x^, X2)dV (2.5) 

where 

o 

3(a.,a_,a_) ^^o 

3(x^,x2,x2) 
( 2 . 6 )  

1' 2' 3 
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where dV = da-da_da„ and 
o 1 z J 8(3^,32,33) 

= J the Jacobian determinant. 

Equation (2.6) is obtained from (2.5) by application of a theorem of 

vector integral calculus (21). The integral is now in a form that is 

ideally suited to the determination of the rate of change of a body 

property with respect to time. One can now apply Leibnitz's rule (21) to 

obtain; 

= F(t,x^,X2,X3)dV = / {F(t,x^(t,3^,32,33),...)j}dV^ 

(2.7) 

Performing the indicated partial differention by the chain rule yields 

J(it + + F (2.8) 

or by substituting equation (2.4) the form 

J ^ + F | f  (2 . 9 )  
dt d t 

is obtained for (2.8). Equation (2.7) can now be transformed back to 3n 

integration over the spatial coordinates by using the inverse of the 

Jacobi3n (i.e., 1/J). 

KLio) 

This integrsl can be put into a more useful form by using the following 

relationship (21): 

1 a T 
3 - a;; (2.11) 

Upon substituting (2.11) into (2.10) the final form is obtained as 

= 4 (IE + (2.12) 
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Equation (2.12) gives one a convenient formula for determining the 

rate of change of a body property with respect to time for a material 

property per unit volume, defined in spatial coordinates. 

This equation concludes the section on various material and spatial 

descriptions. The specific examples that have been considered will be 

very useful in developing the conservation equations and will allow a 

better understanding of their particular formulations. 

Conservation of mass 

A statement of the conservation of mass for an arbitrary body can be 

obtained with the use of equation (2.12) by substituting F = p, where p is 

mass per unit volume (i.e., density), and setting the integrand equal to 

zero. Noting that the integral is valid for a differential volume, one 

can obtain a differential formulation of the conservation of mass equa­

tion. 

J ov. 
(2.13) 

An equation expressing the conservation of mass in this form is tradi­

tionally called a continuity equation. 

The development of the previous section allows one to develop a 

physical interpretation of equation (2.13). The equation implies that 

regardless of the movement a differential volume may experience, its total 

mass must remain constant. This is an important idea when one attempts to 

talk about the conservation of momentum applied to a differential volume 

or a body of any size and shape. Since momentum is, classically, mass 
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times velocity, requiring that the continuity equation be satisfied for a 

differential volume allows mass to be treated as a constant in expressing 

the momentum of that volume mathematically. This simplifies things con­

siderably and is a necessary step in arriving at the classical wave equa­

tions . 

Conservation of momentum 

The equations which are often referred to as momentum equations are 

actually statements to the effect that the force acting on a body is equal 

to its time rate of change of momentum. This can be recognized as an 

application of Newton's second law. The application of this law to a dif­

ferential volume is generally cited as a new axiom of continuum mechanics 

(22) .  

The development of this equation requires that one calculate the 

total force acting on a body and set this expression equal to the time 

rate of change of the momentum. The forces which act on a body are 

usually categorized as body forces, which are proportional to volume, and 

surface forces which are proportional to surface area. The only body 

force which will be considered is gravity, while the surface force will be 

characterized by a stress vector. 

As a first step in deriving the momentum equation, the total surface 

force acting on a body will be considered. 

Consider the example shown in Figure 1. Body A is stationary when 

force is applied. In order for the body to remain stationary a force 

F2 must be applied. The total force and the cross-sectional area AA can 
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BODY A' 

Figure 1. Stress or force per unit area varying as a function of surface 
orientation. 
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be used to define an average force per unit area applied at that end of 

the bar. This force per unit area, defined by divided by AA, is called 

stress. Notice that stress is a vector with magnitude and direction. 

Now, consider the same example after one end of the bar has been resec-

tioned. This situation corresponds to body A' in Figure 1. It is obvious 

that even though the total force remains the same, the stress has de­

creased in magnitude, since AA' is larger than AA, and the direction of 

the stress vector relative to the normal of the surface has also changed. 

However, the total force applied has not changed. That is to say, when 

the stress is multiplied by the cross-sectional area the same total force, 

Fg, results in both cases. 

This concept can now be generalized to arrive at a formal definition 

of stress. Let the surface S (Figure 1) represent an arbitrary internal 

or external surface in a body of material subjected to a system of loads-

Over a small area AS of this surface in the neighborhood of point P, a 
n 

system of forces acts which has a resulting AF^. The superscript n 

indicates that the total force acting on that differential area is a 

function of the orientation of the surface. The orientation is repre­

sented by the outer normal to the surface evaluated at the point P. And 
n 

of course, in the general case, the value of AF^ is also a function of the 

location of point P in the body. It should also be noted that the direc-
n 

tion of AF^ does not necessarily correspond to the direction of the outer 

normal n. The stress vector can now be formally defined as the limiting 
n 

value of AF^ divided by AS as AS approaches zero. 
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n 
n AF 
T = lim (2.14) 
^ AS+O 

The total surface force acting on a body can now be computed by sum­

ming the surface forces on each differential volume in the body. When the 

body is in equilibrium the surface forces on all surfaces common to two 

volumes add to zero, so that one only needs to consider the surface forces 

on the surface bounding the body. This idea can be expressed in equation 

form as follows; 

n 
Total surface force = T^ds (2.15) 

Equation (2.15) is a somewhat unusual surface integral to evaluate in 

that the function to be integrated is a function of the outer normal of 

the surface on which it is being evaluated. In due course a form of equa­

tion (2.15) will be presented which is more practical for evaluation 

purposes. 

The body forces due to gravity are somewhat simpler to evaluate. De­

fining the vector as a body force per unit volume, the total body force 

acting on a body is 

Total body force = ̂  F^dv (2.16) 

The sum of these two force expressions must now be set equal to the 

time rate of change of the momentum. The momentum of a differential 

volume is pv^dv which is the momentum per unit volume. Thus the time rate 

of change of this quantity for the body is 

Time rate of change of momentum = ̂  pv^dv (2.17) 
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Equation (2.12) can be applied to (2.17), which results in the following 

relationship, when it is assumed that the continuity equation is satis­

fied. 

H dv 

dE 4 PV"" = 4 PdT (2.18) 

This leads immediately to an integral form of the momentum equation. 

n 
f F,dv + ̂  T.ds = / pv dv (2.19) 
V i si V i 

In order to arrive at a differential form of the momentum equation 

the surface integral of the stress vector will now be modified to arrive 

at an equivalent volume integral. The stress vector can be related to a 

rank two tensor (23) by the following relationship 

n 
Ti = Tj^ny i = 1, 2, 3 (2.20) 

The rank two tensor T^^ is commonly called the stress tensor, the stress 

components or simply the stress. It gives one a method of determining the 

stress vector at a point for a surface oriented in the n direction. 

After substituting the right hand side of equation (2.20) into (2.19) 

one can transform the surface integral into a volume integral by use of 

the divergence theorem. This theorem expressed in summation convention is 

f B. dv = B n ds (2.21) 
V i,i s i i 

where is an arbitrary vector field. Thus, equation (2.19) becomes 

/ (F^ + - pv^)dv = 0 (2.22) 

Since the integral holds for an arbitrary volume, the momentum equation in 

differential form is 
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- h + '•ji.j (2-23) 

Notice that the density p appears in this equation as a constant. It 

can, however, vary from one differential volume to the next. Neverthe­

less, the particular development of the continuity equation given and the 

subsequent requirement that it be satisfied implies that the total mass 

associated with a differential volume remain constant as a function of 

time. It is only in this way that a meaningful definition of momentum can 

be arrived at, in the classical sense of the concept. 

At this point there only remains the need for a conservation of 

energy equation to allow the subsequent derivation of the classic acoustic 

wave equations. 

Conservation of energy 

The conservation of energy equation will actually prove to be the 

necessary constitutive relationship that will characterize a particular 

medium. It leads to the classical stress-strain relationship for solids 

in addition to establishing a relationship between stress rate and parti­

cle velocity. 

It can be envisioned at this point that one will eventually wish to 

talk about a source of sound waves creating a stress in a medium. The 

stress will in turn cause particles to be displaced in the medium. A 

stress displacement relationship could then form a basis for describing 

the dynamic disturbance caused by the source (i.e., the propagation of 

sound). If this is the case, and indeed it is, all forms of energy input 

to a differential volume will have to be assumed constant or zero in order 
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to establish a unique relationship between stress and particle displace­

ment. This is the essence of the development which follows, and with 

these thoughts in mind a general energy equation will be stated and subse­

quently simplified to obtain the necessary relationships. 

An energy balance written for a closed system can be stated as 

rate of work ^ rate of work ̂  rate of energy _ rate of in- ̂  rate of 
by body forces by surface increase due to crease of increase 

forces nonmechanical kinetic of inter-
energy flux energy nal energy 

Since force per differential volume is F^dv, the rate of work per unit 

volume is the rate of change with respect to time of force times distance 

or velocity times force 

v^Fidv (2.24) 

In a similar fashion rate of work per unit area due to surface forces is 

^i^j i^j (2.25) 

For nonmechanical energy flux given by the vector h^, the amount of energy 

entering per unit area is 

"*i^l (2.26) 

where n^ is the unit outward normal. 

Next it is noted that kinetic energy per unit mass is ̂  p v^v^. The 

rate of change of this quantity with respect to time is 

^ 4 i P^idv = ^ (pv^v^)dv (2.27) 

where the right hand side of equation (2.27) follows from equation (2.12), 

and the fact that 
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Finally,if u equals internal energy per unit mass then pu is internal 

energy per unit volume and the rate of change of this quantity with re­

spect to time is by equation (2.12) 

pudv = ^ pudv (2.28) 

Thus the energy equation can be expressed as 

/ v^F^dv + 9^ (ViTjiHj - = / p(Vj^v^ + u) (2.29) 

and by applying Green's theorem, equation (2.21), in conjunction with the 

fact that the integral must hold for an arbitrary volume, one obtains 

v.Fi + (v.T.^),j - h^ i = P(v^v^ + Û) (2.30) 

It is expedient, at this point, to reference the energy equation to a 

static state where it is assumed that the body forces are uniform and 

constant. In addition the nonmechanical energy flux is set equal to zero. 

With these assumptions the energy equation becomes 

(^i^ji^'j ^ Pv^v^ + pu (2.31) 

where all of the terms are referenced to the static state. Upon expanding 

the left hand side 

= "Vl + ".32) 

and multiplying the momentum equation (2.23) by v^, with the equation 

referenced to the static state, and substituting into (2.32) 

T..V = pu (2.33) 
J-*-

The second order tensor v. . can now be represented as the sum of a sym-
i> J 

metrical and antisymmetrical tensor 

^l,j ' + "ij (2-34) 
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where 

"ij "Î '"l.J + Tj.i) "« =1 <"1,3 

The function is called strain rate while w^^ is descriptive of rigid 

body rotation of the differential volume. If one assumes that w^^ = 0 and 

T^j = Tj^ then equation (2.33) becomes 

= pu (2.35) 

The assumption that T^^ = T^^ can be shown to be true providing that all 

torques are moments of forces and all angular momenta are moments of 

linear momenta (23). 

In concluding this first major section of the chapter, it is helpful 

to state the two key equations of the section in the form in which they 

will be used. The first is the momentum equation (2.23) referenced to a 

static state 

^^^i ^ ̂ ji,j (2.36) 

and the second is the energy equation 

= pu (2.37) 

These two equations form the heart of the wave equation derivations in the 

next section. 

Acoustic Wave Equations 

It is apparent at this point that equations (2.36) and (2.37) cannot 

be used in their present form to produce one equation with an unknown, 

such as the wave equation. The problem is, of course, one too many varia-
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bles. Thus It follows that one of the three variables must be related to 

one of the other two. 

It was stated earlier that knowledge of stress and particle velocity 

would form the basis of discussing sound propagation. Therefore, the 

internal energy term must, in some sense of the word, be related to 

particle displacement or its time derivative particle velocity. The re­

lationship that is needed is the classical stress-strain relationship 

which is derivable from the energy equation. 

This relationship is often referred to as a differential statement of 

Hooke's Law. Hooke's Law states that a spring stretched a small distance 

by an applied force will produce potential energy in the form of a re­

storing force. The magnitude of the force is proportional to a constant 

which describes the stiffness of the spring. The stress-strain equation 

has an analogous interpretation in that a particle displaced by a stress 

will tend to return to its original position upon removal of that stress. 

Thus the concept of strain, which is related to particle displace­

ment, will be formalized in the next section as a necessary prelude to 

deriving the wave equation. 

Stress-strain relationship 

The term strain refers to a change in the relative positions of the 

material points in a body. If a particle located at the position at 

time t was located at the position a^ initially, then the change in its 

relative position can be stated as uu = x^ - a^, which is the displacement 

vector. A differential approximation to the change in the relative dis­

placement of two particles, assuming small displacement gradients, would 
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then be stated as 

9u 
du, = — dx. (2.38) 

j ] 

The second-order tensor 3u^/3x^ can be separated into symmetrical and 

antisymmetrical tensors giving 

dUi = (Ejj + a2j)dx. (2.39) 

where 
- 9u, 9u. , 3u 3u. 

^ij = 2 (&%: + ^'ij = 2 (2-40) 

The tensor describes the rigid body rotation, which has been assumed to 

be zero, giving 

du^ = E^jdx. (2.41) 

where is called the spatial strain tensor. 

If one defines the strain rate as the derivative with respect to time 

of the strain one obtains 

"ij • I + 'j.i' - "ij 

the previously defined strain rate tensor. 

The internal energy will now be defined as a function of strain only. 

If strain is designated as an independent thermodynamic variable, then by 

Gibbs' free-phase rule applied to a single-phase single-component system 

there is one other thermodynamic variable that is being treated as a con­

stant. This variable could be, for example, temperature or entropy to 

name but a few. The choice is dictated by the desired application of the 

resulting equations. In some cases an isothermal condition might be a 

realistic assumption while in others constant entropy might be better. 
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The choice makes no difference in the form of the wave equations, it only 

dictates under what conditions certain constants are evaluated. 

With u defined as a function of strain, the time rate of change of 

internal energy is 

3u u = e,. (2.43) 

and substituting (2.42) and (2.43) into (2.37) gives 

Tlj = P (2.44) 

and an additional differentiation with respect to strain yields 

9T.. nZ 

The standard assumption of the variation in density with respect to strain 

being negligible has been made and the density p is approximated by p^, a 

constant. Assuming that the rate of change of stress with respect to 

strain is a constant 

9T.. .2 

and for small displacements 

^ij " ̂ijkm ^km (2.47) 

The components of the rank four tensor c^^^^ are commonly referred to as 

the elastic coefficients. 

Equation (2.36) can be combined with equation (2.47) to develop a 

general wave equation for elastic solids in terms of particle displacement 

as follows: 
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and substituting into equation (2.36) 

p̂ i . jMa (2.49) 

Noting that = ii^ and that = '^jimk* *hich is a consequence of the 

symmetry of the strain tensor 

""l ° 'ijkrn "k,aj (2-50) 

which is the general wave equation for elastic solids. 

As mentioned before, a separate wave equation for nonviscous fluids is 

required. This is necessary because strain is not a meaningful concept in 

a medium which cannot support strain. That is to say, the application of 

a stress to a nonviscous fluid does not result in a static deformation of 

that body which can be related to a change in its internal energy but 

rather it would result in a translation of that body which would be re­

flected in a potential or kinetic energy term. Even though strain itself 

is not a meaningful concept strain rate is a concept with some utility, 

as shown in the subsequent development. 

From equation (2.42) and the determination of the time derivative of 

equation (2.47) 

" '=311- L • <'k,m + %,k> (2-51) 

it follows then that 

ĵi.j = 4̂  <'k,.j+-..w' <2-"> 

and noting that c^^^ = 
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^ji,j ^jlkm \,mj (2-53> 

combining equation (2.53) and (2.36) leads to 

"'i • =jita \.m} (2-54) 

Equation (2.54) is a general wave equation in terms of particle velocity 

instead of particle displacement, and although it is being developed here 

for use in nonviscous fluids, it is in no way limited in its application 

to that medium alone. 

A point of clarification is in order with respect to the use of the 

tensor c.., in a nonviscous fluid. In the sense that c.is referred 
]ikm J ikm 

to as an elastic coefficient, the use of the symbol is objectionable be­

cause nonviscous fluids possess no elastic properties. However, in the 

sense that c... is a constant of proportionality and a first order 
ijkm 

approximation to the relationship between strain rate and stress rate the 

use of the symbol is entirely appropriate. 

Equations (2.50) and (2.54) are in useful formats if the medium under 

consideration displays anisotropic characteristics. However, if one is 

dealing with an isotropic medium a considerable simplification of both 

equations can be made. The elastic coefficients for an isotropic solid 

can be stated as follows (24): 

Substitution of this expression into equation (2.54) yields 

- (X + + (U) (2.56) 

and using the identity 

^k,ik ~ ̂ i,kk ̂  ̂ikl^lrs^s,rk (2.57) 
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equation (2.56) becomes 

P'l - (A + 2w)7i.kk + (A + tdSitlSlrsTs.rk (̂ 'SS) 

Using the Helmholtz theorem (23), any piecewise differentiable vector 

field can be expressed as the sum of two vector fields, one of which is 

solenoidal and the other irrotational. Thus, 

v^ = V® + v^ (2.59) 

where 

'?,kk • " hrs^l.r ' " <2.60) 

If one limits the wave equation to irrotational fields then equation 

(2.58) reduces to 

pv^ •-= (X + 2y)v^^j^j^ (2.61) 

In the Interest of notational simplicity the superscript p will be 

dropped, but it should be understood that all future references to wave 

equations will be made with the understanding that the disturbance is 

irrotational. 

A parallel development could now be made for equation (2.50) which 

yields 

pu^ = (X + 2y)u^^j^j^ (2.62) 

this being the wave equation which will be applied to elastic isotropic 

solids. Equation (2.61) will, with one additional simplification, be 

applied to nonviscous fluids. 

The coefficients X and y are called Lame constants (23), y also being 

called the shear modulus. Since a nonviscous fluid would have a zero 
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shear modulus, equation (2.61) becomes 

<̂ 1 - (2-63) 

which will be the wave equation used for nonviscous fluids. 

The two wave equations, (2.62) and (2.63), form the basis of all 

future wave propagation analysis. It has been stated that they are valid 

for nonviscous fluids and elastic solids. For instance, when one states 

that a solid is elastic, that is simply another way of saying that all of 

the assumptions made in arriving at equation (2.62) can be satisfied by 

the particular solid being considered. A similar idea applies to fluids. 

Thus all future analysis presupposes that the material being considered 

can be adequately modeled by one of these two mathematical characteriza­

tions . 

The most important restriction that this approach puts on a material 

is that it not absorb any energy from a wave propagating through it. That 

is to say the two models presented represent lossless materials; no mecha­

nism for loss of energy was considered. However, classical acoustic 

theory does allow the introduction of a simple model for loss called vis­

cosity and it is possible to develop wave equations for a viscous fluid as 

well as a viscoelastic solid. The mathematical development of the wave 

equation for viscous mediums represents a modest extention of the deriva­

tions presented in this chapter. Therefore, its statement will be de­

ferred to Chapter III along with discussions of the solution of wave 

equations in lossless and lossy materials. 
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CHAPTER III. SOLUTIONS OF THE WAVE EQUATIONS 

The main objective of this chapter is to determine a solution of the 

wave equation which can be used to describe the propagation of a pulse 

associated with a pulsed-ultrasound system. In addition, the behavior of 

the pulse when propagating in a lossless or lossy medium will be investi­

gated by substituting the previously derived solution into an appropriate 

wave equation. Such an investigation has two objectives; (1) to verify 

that the descriptive physics agrees with physical observations of real 

systems and (2) to determine if there are any implicit mathematical 

limitations associated with the solution. 

Determination of the General Solution 

Experimental investigation of pulsed ultrasound systems reveals that 

the wave that is produced by the transducer and propagated in the medium 

is approximately an exponentially damped sinusoid. It is not important to 

this investigation to know how this pulse is produced, one only needs to 

accept the idea that the pulse is established as a function of time at the 

boundary between transducer and medium. A mathematical statement of this 

idea would be in the form of an initial-boundary value problem. 

In the interest of simplicity, the problem will initially be stated 

in a general form which can be related to a single Cartesian component of 

either one of the two wave equations, (2.62) or (2.63). The wave equation 

in general form can be stated as follows: 

U^j. - C^U^ =0 0 < X < oo; t > 0 (3.1) 

Notice that the equation with its limits identifies it as being analogous 
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to an infinite transmission line problem. Eventually, an additional 

boundary located a finite distance from the source will have to be con­

sidered. This boundary, along with its associated boundary conditions, 

will have to be related to the irregularly shaped object which reflects 

the incident pulse. The consideration of the effects of this boundary 

will be deferred to the next chapter. The problem that is presently being 

considered is the infinite transmission line problem. Its solution will 

eventually be used to describe the pulse that is incident on the reflect­

ing boundary. 

It is assumed that the system is initially at rest and thus the ini­

tial conditions for equation (3.1) are the following; 

I.e. U(x,0) = 0 U^(x,0) = 0 (3.2) 

The boundary condition for equation (3.1) will be some function f(t) 

where the f(t) will be related to the pulse shape observed for pulsed-

ultrasound systems. 

B.C. U(0,t) = f(t) t > 0 (3.3) 

The solution to this initial-boundary value problem is well-known 

(25) and has the following form. 

U(x,t) = f(t - x/c) t - ̂  2 0 (3.4) 

It can be seen from equation (3.4) the term x/c must have units of seconds 

for the argument of the function f to be dimensionally correct. This 

implies that c has units of velocity, which leads to the identification of 

the constant c as the propagation velocity of the function f. Thus equa­

tion (3.4) implies that this function will reproduce itself at values of 

X > 0, x/c seconds after the pulse is initiated at the boundary. In order 
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to apply these results to the problem at hand, the general f(t) will now 

be replaced with a specific piecewise function. 

A reasonable representation of the pulses associated with pulse-

ultrasound systems is given by equation (3.5). 

U e " ̂cosw't 0 < t < IOTT/W" 

U(0,t) =< ° (3.5) 

[ 0 t > IOTT/W" 

This leads to the solution for equation (3.1) given in the following 

equation. 

U(x,t) = < 
0 e-""'' - f'cosw- (t - Ï) 0 < t - Ï < igï 

c w 

This solution can be put into a form which is easier to handle in future 

calculations by substituting 

k' = — k" = — (3.7) 
c c 

and noting that 

U . Re{n (»'t-k'x) j ^ 
o o 

where Re{} stands for the real part of the complex function defined within 

the brackets. An additional simplification can be obtained by defining 

complex constants w and k in the following fashion. 

w = w' + jw" k = k' + jk" (3.9) 

Thus, the final form of the solution given in equation (3.6) will be 

written as 
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^^j(wt-kx) x<t<10lL + 2E 
o c — w c 

(3.10) 

where 

U(x,t) = Re{U(x,t)} (3.11) 

Graphical representations of this pulse are shown in Figure 2. Next, the 

validity of stating the solution in the form of equation (3.10) will be 

tested by direct substitution into a wave equation for lossless mediums. 

Lossless Mediums 

In view of equation (3.10) a solution for the ith component of the 

wave equation (2.62) can be stated as: 

Ù ,  -  n ,  « j s  <  t  <  i g ï  +  ( 3 . 1 2 )  
i io c — w c 

Direct substitution of this solution into the wave equation yields 

- p w ^ D .  - ( X  +  ( 3 . 1 3 )  

which leads immediately to the following relationship. 

Z = (X+^jl/2 (3.14) 
K p 

The substitution of equations (3.9) and (3.7) into (3.14) results in 

equation (3.15). 

c = (3.15) 

This result is consistent with the interpretation that would be given to 

the term (X + 2y/p) by direct comparison of equation (2.62) with equation 

(3.1). 
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(a) 

(b) 

Figure 2. Exponentially damped sinusoidal pulse, (a) Propagating pulse 
as a function of time with position fixed, (b) Propagating 
pulse as a function of position with time fixed. 
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Finally, the validity of a solution in the form of equation (3.12) 

needs to be investigated for a lossy medium. 

Lossy Medium 

The investigation of pulses propagating in a viscous medium requires 

the derivation of a wave equation for viscous material. This is a rela­

tively simple matter and can be accomplished by extending theory already 

presented in Chapter II. 

Viscous effects are classically accounted for by introducing an addi­

tional term into the stress-strain relationship. Therefore, the Voigt 

model (26) for viscous materials will be introduced which regards stress 

to be a function of strain and strain rate. A statement of this model for 

isotropic viscoelastic material is 

T = (A + 2p)u . + yu . (3.16) 

Differentiating (3.16) with respect to the jth index and substituting 

into equation (2.36) yields a wave equation for viscoelastic material as 

pii^ = (A + 2w)u^ jj + (3.17) 

If one substitutes a solution of the form given in equation (3.12) the 

the following analysis results; 

-w^p = -(X + 2y)k^ - jXk^w 

^ pw? 
(X+2y)+jwY 

" - <3.18) 

If one now approximates the expression on the far right of (3.18) by the 
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first two terms of a power series expansion then 

" - " (1 - j 2(^> 

which is an acceptable approximation for « 1. Once again letting 

k = k' + jk" and noting that ^ yields 

2 
k' + jk" = - - j (3.20) 

2pc^ 

and again letting 

w = w' + jw" 

k' + jk" = — + j — - j ((w'^ - w"^) + j2wV) (3.21) 
2pc 

or 

k* + jk" = (^ + - j(-^ (w'2 - W"^) - ̂ ) 
2pc-^ 

and equating coefficients. 

w"Y \ 
3 

2pv 2pc 2pc 
k' = w' (̂  + k" = + w"(̂  + ̂ )̂ (3.22) 

Now if one lets 

F- = I(l + ̂ ^) a = (3.23) 
^g " 2pc^ 2pc 

then 

k' = — k" = -a + — (3.24) 

and one obtains, after expanding equation (3.12) and substituting the 

above relationships, equation (3.25). 

i. - JS- < t < i2l + i (3.25) 
1 i g g c - w" c_ 
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The form of equation (3.25) carries with it some interesting implications 

about pulses propagating in viscoelastic materials that bear a closer 

look. 

To begin with, the solution describes an exponentially damped 

sinusoid propagating through the medium exactly as it did in the lossless 

case, except the amplitude now decreases exponentially with respect to 

propagation distance. In addition, the magnitude of the damping is pro­

portional to the square of the frequency w', the natural frequency of the 

transmitted pulse. It is also interesting to note that the entire pulse 

now propagates at a different velocity than it did in the lossless case. 

Since all of the terms in equation (3.23) are positive, the implication is 

that the viscosity causes the pulse to propagate at a slower rate than 

before. 

As interesting as these ideas are, it is not the purpose of this 

thesis to investigate their accuracy quantitatively. It is simply noted 

at this point that all of the implications made are reasonable from a 

qualitative standpoint. It should also be remembered that the primary 

purpose of the solution is to provide a reasonable representation of the 

propagation of the pulse to the reflecting surface. Once again, the 

implications of the previous two sections reveals nothing that poses an 

immediate problem. However, there is a limitation on the maximum ampli­

tude of the pulse that needs to be considered which leads to a condition 

called the small-amplitude criterion. 
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Small-Amplitude Criterion 

In the classical theory of time-harmonic acoustic fields, it is 

assumed that all variables have the same functional form (i.e., 

(wt It is this assumption that gives classic continuous wave 

mathematics most of its computational simplicity. However, it is this 

assumption which limits the magnitude of a signal that can be considered. 

This point can be aptly illustrated by considering the momentum equation, 

(2.36). 

Suppose that one has knowledge of the particle velocity in a material 

and wishes to compute the stress gradient from the momentum equation. In 

order to do this the total time derivative of v^ must be calculated, which 

is 

3v 3v 

î = aT + ""i 3̂  (3-26) 

and assuming v^ = Vo^ e^^*^ ^i^ and substituting into (3.26) yield 

(3.27). 

- jkVo^ (3.27) 

The second term on the right hand side of (3.27) is a function of 2w in­

stead of w and violates the assumptions previously made. Therefore, one 

requires that 

kVo^ « wVo^ 

kVo 
« 1 

w 

and for real w and k 
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Vo 
—i « 1 (3.28) 
c 

Thus, the basic criterion that is established to insure that all variables 

have the form ^i^ is that the magnitude of the particle velocity be 

much less than the magnitude of the propagation velocity. A wave that 

meets such a criterion is commonly referred to as a small amplitude wave. 

One also notes from the definition of particle displacement (i.e., u^ = 

- a^) that v^ = u^ and thus from equation (3.12), equation (3.28) can 

also be expressed as 

wUo. 
« 1 (3.29) 

c 

Extending equation (3.29) to the case where w is complex in a lossless 

medium would yield 

(w^'+w^'y^'^Uo. 

c 

and for the lossy case 

- « 1 (3.30) 

(w^'+w^'V^^Uo 
« 1 (3.31) 

c 
S 

Equations (3.30) and (3.31) can now be used to establish a limit on the 

degree of exponential damping allowed in the pulse description since in­

creasing the damping or shorting the duration of the pulse leads to in­

creased particle velocity and in the lossy case to decreased propagation 

velocity, which quickly violates the small signal criterion. 

The small signal criterion represents the most Important restriction 

on the use of the solutions presented in this chapter. However, essen­
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tially all diagnostic ultrasound devices use low intensity sound waves; 

this implies that the criterion should not prove to be excessively re­

strictive. 

There are many additional speculations that could be raised concern­

ing the application of the classic wave equation to certain materials that 

pulsed-ultrasound systems operate in. Human tissue is one example of such 

a material. Considerable amounts of research have been done in this area 

in the past and continue to be done in the present. However, as stated 

before, the prime objective of this analysis is to have an acceptable 

first order approximation of the propagation of a pulse to and from a 

reflecting surface. If the various constants that are used in the equa­

tions are carefully evaluated at suitable frequencies, the classic wave 

equations should provide a sufficiently accurate description. 

Thus, the solutions presented in this chapter will now be used to 

describe the pulse incident upon an irregularly shaped boundary and, 

along with suitable boundary conditions, will be used to determine the 

characteristics of the reflected pulse. This determination is the subject 

of the material presented in the next chapter. 
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CHAPTER IV, REFLECTED PULSES 

It has already been mentioned in the introductory chapter that re­

flected pulse problems have been considered in the literature for a number 

of years. It was also mentioned that the techniques used were basically 

one of two types, either a boundary value problem approach or an integral 

transform technique. Both methods are severely limited by the types of 

boundaries that can be handled computationally. Thus, a well-known method 

that gives approximate solutions to reflected wave problems has been 

adopted. The method is based on a branch of geometric optics called the 

theory of physical optics. 

Physical optics is a technique of the theory of geometric optics. It 

is a technique which yields approximate solutions to certain types of 

boundary value problems. The accuracy of the solution is determined by how 

well a given problem can meet certain idealized conditions. These condi­

tions will prove to have the greatest effect on limiting the types of 

problems that can be solved by the algorithm developed in this thesis. 

The chapter will begin with a discussion on geometric optics as a 

prelude to a discussion on physical optics. Following this discussion, a 

surface integral will be developed which will be the heart of the mathe­

matical model developed for pulse-ultrasound systems. 

The discussion on geometric optics will begin by conceptually con­

sidering a wave striking the boundary between two dissimilar materials. 



www.manaraa.com

43 

Geometric Optics 

Observation of roughly equivalent situations in nature indicate that 

when a wave encounters a boundary or obstacle in its path a new wave 

emanates as if from the boundary itself. In the case of the boundary 

being infinite in extent, one would say that the wave was reflected or 

scattered and in the case where the boundary is reduced to a point, one 

would say that the wave was diffracted by the obstacle. Even if the 

boundary is not infinite, one continues to say that the wave is reflected 

providing that the extent of the boundary remains large with respect to 

the wavelength of the incident wave. In a similar way, the wave is viewed 

as being diffracted given that the extent of the boundary remains small 

with respect to the wavelength. In between these two regions a variety 

of curious phenomena can occur. In all fairness, it is not accurate to 

limit the concept of diffraction to small obstacles since the character­

istic that identifies diffraction also arises when a wave strikes the 

edge of a plate for example, which in itself may be very large in extent. 

Therefore, any large, noninfinite body can give rise to both re­

flected waves and diffracted waves, but if analysis is limited to the 

reflected waves one is dealing with the theory of geometric optics. In 

addition, the extent to which the theory of geometric optics can yield an 

approximation to the total solution of a problem is directly proportional 

to the extent to which the contributions of the diffracted waves can be 

neglected. 

Within the theory of geometric optics there exists two main divisions 

which may be referred to as specular reflection and scattered reflection. 
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Scattered reflection arises when the surface is "rough" and the incident 

wave gives rise to a reflected wave at each point on the surface that 

emanates energy uniformly into a infinite halfspace; this is the inherent 

assumption of physical optics. The definition of what constitutes a rough 

surface will be addressed shortly and it is, as might be expected, a fre­

quency dependent concept. Specular reflection on the other hand assumes a 

perfectly smooth surface with the incident wave being reflected at each 

point on the surface in a direction determined by Snell's law and it is 

assumed that this particular direction receives all of the reflected 

energy. This statement is true regardless of the frequency of the inci­

dent waveform for the case of a "perfectly" smooth reflector. However, a 

perfectly smooth surface appears not to exist and the definitions of 

specular and rough are relative concepts that are related to the frequency. 

of the incident waveform and the dimensions of the irregularities of the 

surface. 

The classical equation used to make this dichotomous decision is 

referred to as the Rayleigh criterion (27). Essentially it requires that 

one view two rays located a differential distance apart in space striking 

a boundary in such a way that one ray would strike the top of the irregu­

larity while the other would strike a portion of the surface which would 

be viewed as the bottom of the irregularity. Now if it is assumed that 

the irregularities are h units high, then for the case where the incident 

rays are normal to the plane of the surface, one can define a path dif­

ference of 2h units. However, as the angle of incidence slowly increases 

from zero toward ninety degrees, the actual path difference between 
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the two rays tends toward zero. In equation form this can be expressed as 

Ad = 2hcos4>^ (4.1) 

where (J>^ is the angle of incidence which is equal to 0 at normal inci­

dence, and Ad is the path difference. The path difference can now be ex­

pressed as a phase difference by 

A0 = Ad = coscj)^ (4.2) 

where A' is the wavelength of the incident wave. A value of TT radians 

for A9 is viewed as producing maximum interference or scattering while a 

value of zero radians is viewed as producing no interference and hence 

specular reflection. The division between rough and smooth is then 

arbitrarily chosen as A0 = IT/2. This value immediately leads to the 

Rayleigh criterion which is 

" '8:% (4-3) 

Another way of viewing the Rayleigh criterion is to view the right 

side of equation (4.2) as a measure of roughness and say that the surface 

will only be considered smooth under one of two conditions. 

-> 0 or -> I T / 2  (4.4) 

Perhaps the greatest verification of the validity of the Rayleigh cri­

terion is to be found in observations of natural events. An asphalt high­

way at high noon reflects light evenly in all directions whereas an indi­

vidual driving west at sunset has often encountered specular reflection 

off of the same highway. 
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The key points that have been made or can be inferred from the last 

few paragraphs are the following: When one takes a physical optics 

approach to dealing with reflection it is assumed that the energy con­

tained in an incident waveform is reflected uniformly in all directions 

(i.e., scattered by the surface). If one accepts the Rayleigh criterion 

as the definition of roughness then the only way that a surface can pro­

duce absolutely no scattering is for the frequency of the incident wave­

form to approach infinity since every surface is rough in some sense even 

if one has to view things on a microscopic level. If an irregularity on a 

plane surface becomes too large one would be forced to view the problem as 

reflection from an irregular boundary. And if a physical optics approach 

is used to deal with a reflection problem it would be possible to have 

regions on an irregular boundary, which according to the Rayleigh cri­

terion should be viewed as regions of specular reflection and hence should 

not be included in a physical optics analysis. Contributions from these 

regions would be included via ray theory. 

As can be inferred from the previous discussion, there are a num­

ber of classical methods that address themselves to waves incident on 

boundaries. Whether one chooses to use ray theory, physical optics or 

diffraction theory or a combination thereof is dictated by the assumptions 

that one can make about the boundary associated with a particular problem. 

In the case at hand, the physical optics approach will be found to be 

sufficient. 

In the physical optics approach to solving reflection problems, each 

point on the reflecting surface is treated as if an infinite plane existed 
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at that point which is tangent to the surface at that location. The 

magnitude of the reflected wave is computed as the normal component of the 

reflected wave determined by the laws of specular reflection. Thus, in 

order to complete the discussion of geometric optics and pave the way for 

the development of the reflection integral, a development of the equations 

governing specular reflection for an infinite plane boundary will be 

presented. 

Specular Reflection 

When a transmitted wave strikes a boundary (i.e., incident wave) 

between two mediums at an arbitrary angle, boundary conditions require 

that one postulate the existence of both a reflected wave and a trans­

mitted wave. In some special cases a phenomenon called mode conversion 

takes place and it is postulated that two types of reflected waves arise 

in addition to two types of transmitted waves. The existence of mode con­

version is required in order to satisfy boundary conditions. 

At a boundary between two fluids, for example, an incident wave gives 

rise to a single reflected and a single transmitted wave. At the bound­

ary between two solids an incident wave gives rise to two reflected and 

two transmitted waves. The waves are referred to as reflected longi­

tudinal and shear waves and transmitted longitudinal and shear waves. For 

instance, a wave function describing particle displacement would imply 

that particle displacement was normal to the axis of propagation if it was 

a shear wave or along the axis of propagation if it was a longitudinal 

wave. Longitudinal waves satisfy wave equations for irrotational fields 
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while shear waves satisfy wave equations for solenoidal fields. Since the 

waves produced by the sources to be considered later in this work are 

irrotational the discussion on reflected waves is limited to reflection of 

incident longitudinal waves. 

Figure 3 represents an incident longitudinal wave striking a plane 

boundary between two mediums. Both mediums are treated as ideal lossless 

fluids. The expression for the incident particle velocity is 

jw(t-njx ) 

'l " "iV — (4-5) 

where nf = sin6e(l) + cos6e(2) with e(i), i = 1, 2, 3 being unit vectors 

along the x 1 = 1, 2, 3 axes while c^ is the propagation velocity in 
i > X 

medium one. The boundary conditions are 1) normal component of velocity 

is continuous across the boundary and 2) normal component of stress is 

continuous across the boundary. Normally, in the case of nonviscous 

fluids it is more common to talk about pressure than stress. The stress 

is related to the pressure, p, by 

= -p6^j (4.6) 

The off-diagonal components of the stress tensor are zero since a non-

viscous fluid cannot support shear forces while the on-diagonal components 

are equal, in order to satisfy equilibrium requirements. 

The boundary conditions can be satisfied by a transmitted and re­

flected wave of the form 
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xz 

MEDIUM Z 
FLUID TRANSMITTED 

LONGITUDINAL 

MEDIUM 1 
FUJID 

INCIDENT I REFLECTED 
LONGITUDINAL LONGITUDINAL 

Figure 3. Plane wave incident on a fluid-fluid boundary. 

MEDIUM 2 
SOLID 

MEDIUM I 
SOLID 

INCIDENT 
LONGITUDINAL 

TRANSMITTED 
SHEAR 

TRANSMITTED 
LONGITUDINAL 

REFLECTED 
LONGITUDINAL 

REFLECTED 
SHEAR 

Figure 4. Plane wave incident on a solid-solid boundary. 
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T T jw(t-nTx ) 
= n^V^e —— (4.6a) 

R R. jw(t-njx ) 

"l • 

where 

= sin0^e(l) + cos0^e(2) (4.7a) 

= sin6ge(l) - cos0j^e(2) (4.7b) 

In order to demonstrate this fact and to determine the relationship 

between magnitudes of incident and reflected waves the boundary condi­

tions are stated in mathematical form as 

e(2)*(v^ + - v^) = 0 (4.8a) 

Pj + PR - PT = 0 (4.8b) 

The stress boundary condition has been restated simply as continuity of 

pressure. Using the equations (4.8b), (4.6b), (4.6a) and (4.5) now yields 

the following expression for continuity of velocity when evaluated at x^ 

= 0 

jw(t-x sin8) jw(t-x sin0 ) jw(t-x sin0 ) 
V^cos0e - V_cos0_ e = V„cos0„ e 
I c^ R R c^ T T Cg 

(4.9) 

To satisfy these conditions for all values of x^ it is required that 

sin0 ̂  (4.10) 

"^1 *^1 ^2 

which is satisfied for 
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e = 0R 

sine sine 
^ i (4.11) 

Ci Cg 

Equation (4.10) is the well-known Snell's law of geometric optics. Equa-

^2 
tion (4.11) implies that 0 can only be real providing — sine _< 1. If 

T c^ 

this condition is not satisfied total reflection occurs. Equation (4.9) 

now reduces to 

Vjcos0 - V^cosB = V^cosB^ (4.12) 

This equation can now be combined with (4. 8b) with the additional knowl­

edge that 

Equation (4.13) relates the magnitudes of velocity waves with the magni­

tude of the associated pressure wave and follows as a necessary inference 

from the momentum equation (2.36) and equations (4.5) and (4.6). Thus 

(4.8b) becomes 

PlCi(Vi + V^) = PgCgVy (4.14) 

Assuming that V = RV , where R is called the reflection coefficient, 

(4.12) and (4.14) become 

V^cos0(l - R) = VpCosB^ PiC^(V; + V^) = p^c^V^ (4.15) 

Solving for R 

z.cosB - z-cos0„ 

® = z^cose + CjCose, 

where = pgCg, = p^c^ and the z's are called acoustic Impedances. 
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The case of reflection from a solid-solid boundary, where mode con­

version can take place, is considerably more complicated than the fluid-

fluid boundary. 

The boundary conditions are continuity of displacement and stress at 

the interface. For a wave at an arbitrary angle of incidence the wave 

will have both a normal and tangential or shear component, so the two 

boundary conditions produce four conditions that must be satisfied, con­

tinuity of the tangential and shear components of displacement and stress. 

Referring to Figure 4 the incident wave is given by 

where n̂  = sin9e(l) + cos0e(2), while the transmitted and reflected 

longtudinal waves are 

(4.17) 

(4.18) 

jw(t-l^x^) 

with 

1? = sin8^^ e(l) - cos8^^ e(2) (4.19) 

1^ = sin8^2 e(l) + cosG^^ e(2) (4.20) 

and the transmitted and reflected shear waves 
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jw(t-n^x^) 
(4.21) 

- (-:ljk*(3)"Z)ST * 
jw(t-n^x^) 

with 

= sin8ge(l) - cos0j^e(2) (4.22) 

= sin0^e(l) + cos0^e(2) 

These equations can now be used in conjunction with the stated boundary 

conditions to yield the following matrix formulation for the various 

transmission and reflection coefficients (23). 

cos6„ 

sine„ 

zsin20„ 

-COS0, 

sin0 
R 

sin0LT 

-cos 6. 
LT 

sin0 

COS0 

-^Sin2e^ f2 

-c. 
zcos20_ cos20 

1 K 
'p2 

sin20. 
LT c 

sin26 
pi 

sin0 

-COS0 

sin20 
'pi 

(4.23) 

with 

2 = ^2^2 

Pl^l 

C _ RY 

= -21 (1 _ cos^B) 

-pl 

C N 2c« Ç 

^2 • ~ ®LT^ 
^ '=P2 

The coefficient of interest is R, the ratio of the magnitude of the 

reflected longitudinal wave to the incident longitudinal wave. 
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Finally, the case of a solid-liquid boundary needs special considera­

tion, since a nonviscous fluid cannot support shear forces while a solid 

can. Therefore, the conditions on stress and displacement at the boundary 

are uncertain. The answer is not given by classical theory and it appears 

that the usual approach is to use the formula derived for the liquid-

liquid boundary. 

Thus, regardless of the application of the reflection integral either 

equation (4.16) or (4.23) will be used to determine the magnitude of the 

reflected wave arising at a boundary due to a known incident wave. 

Reflection Integral 

The material that has been presented thus far constitutes a suitable 

foundation for the consideration of the pulse reflection problem. The 

ability to predict the nature of pulses reflected off of irregularly 

shaped objects is just one aspect of modeling the operation of a pulsed-

ultrasound system. However, it is the most formidable aspect of modeling 

such a system, and as such, it constitutes the heart of the entire model. 

The purpose of this section is to develop this key expression which will 

be referred to, henceforth, as the reflection integral. 

The general nature of the problem being considered is one of a source 

radiating in the presence of a reflective object. Problems of this nature 

are common in acoustic fields. It is possible, in many cases, to formu­

late an expression for the "exact" solution to problems of this type, but 

an "exact" evaluation of the expression is often impractical. Therefore, 

it is common to see simplifications introduced in one of two ways. One of 

these is to consider a physical situation which is slightly different than 
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the original but is thought to behave in a similar manner. The object of 

such a consideration is to find a situation where a simpler expression for 

the solution can be formulated. The other approach is to put restrictions 

on ranges of values for certain variables that will allow the use of sim­

plifying approximations. 

Both of the techniques just mentioned will be used in arriving at the 

reflection integral; in addition, it will be advantageous to subdivide the 

reflection problem into a number of simpler problems which can be con­

sidered independently. In order to clarify the relationship between these 

simpler problems and establish the role of various approximations, a 

general discussion of the pulse reflection problem will be conducted be­

fore considering the mathematical details. 

General considerations 

The characteristics of a pulse reflected off an irregularly shaped 

object will be viewed as a function of two factors: (1) the description 

of the source field, and (2) the shape of the reflection boundary and the 

material characteristics of both the obstacle and the transmission 

medium. The general considerations begin with a discussion of the source 

field. 

Conceptually, one seeks a mathematical description of the field 

radiated by the source when the obstacle is not present. This field will 

be defined as the incident field. The derivation of such a description 

can, in itself, be a complex problem. Typically, assumptions such as a 

point source or an incident uniform plane wave can be made in a reflection 

problem, but neither one of these will serve as an adequate description in 
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the case at hand. It can be observed experimentally, for example, that 

transducers of the same physical dimension and operating at the same fre­

quency can generate different A-scans. Thus the radiation characteristic 

of a particular transducer is an important design parameter and needs to 

be included in a system model. 

In view of the facts just mentioned, a simple laboratory technique 

was devised which would allow one to arrive at an empirically derived 

mathematical description of the incident field. The end result is to 

describe this field as a plane wave whose amplitude is allowed to vary 

from point to point on the wave front, has a shape identical to the pulse 

described in the previous chapter and propagates in a direction normal to 

the transducer (i.e., source) face. In addition, the description is de­

fined only over an area of the same size and shape as the face of the 

transducer on a plane parallel to the wave front. The aspects of this 

description which are dependent upon the particular transducer being used 

are the area occupied by the wave front and the amplitude characteristics. 

In many ways the nature of the incident field is analogous to the radia­

tion pattern of a flashlight. 

It should be noted that the plane wave assumption is consistent with 

the idea that the acoustic beam (radiated field) has a constant area and 

shape on the wave front. That is, one is assuming negligible divergence 

of the beam which is approximately true only over a certain range of dis­

tances from the source. This idea is aptly illustrated with a flashlight. 

In many cases pulsed-ultrasound units are operated in such a range; thus, 

the assumption should not prove to be too restrictive. However, it should 
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be pointed out that the validity of the reflection integral will not be 

dependent on this assumption, it will merely reduce the final computa­

tional complexity. 

Having determined an expression for the incident field, one now 

assumes that this expression can be used to determine values of the source 

field at the surface of the obstacle. This information, in conjunction 

with information on the shape of the boundary and nature of the material 

discontinuity, can be used to predict the characteristic of the reflected 

wave at the surface. 

The description of the reflected wave at the boundary is an approxi­

mate one, based on an attempt to satisfy the necessary boundary conditions 

on a point-by-point basis. The essence of the technique is to assume an 

infinite plane tangent to a particular point on the surface and then 

calculate the value of the reflected wave at that point using the methods 

of the previous section. The validity of such an assumption, which is 

called the Kirchhoff approximation, has been investigated in a paper by 

W. C. Meecham (28), and he concludes that it is valid providing that the 

maximum slope of the surface at that point is much less than one and the 

propagation constant times the minimum radius of curvature is much 

greater than one. However, these restrictions where stated as being 

"reasonable" rather than absolute and they will not always be adhered to 

in this paper. Nevertheless, they do serve as an indicator of possible 

problem areas. 

Once one has a description of the reflected wave on the surface of 

the obstacle, it is entirely appropriate to view the obstacle as a source 
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in its own right. For example, assume that the wave equation for particle 

velocity has been used to describe the incident wave, and that a descrip­

tion of the particle velocity of the reflected wave is now available at 

each point of the surface. It is just as easy to say that that particular 

pattern of particle velocity has been caused by a vibrating surface rather 

than a reflection. Thus, it is conceptually possible to reduce the origi­

nal source-obstacle problem to an equivalent problem, where one seeks the 

radiation pattern of an "induced" source. 

One rather obvious and intuitively attractive way to determine the 

radiation pattern of the source would be to model each differential sur­

face element as a small source vibrating with the characteristic velocity 

found at that point. The total radiated field at any one point could then 

be computed as the vector sum of the contributions from each differential 

source. In the next part of this section, the mathematics involved with 

taking such an approach will be investigated. 

Mathematical formulation 

It will be assumed that a reasonably accurate determination of the 

reflected wave can be achieved by assuming that each point on the reflect­

ing surface is acting as a simple point source in an infinite, rigid 

baffle. Obviously, the characteristics of a point source and an infinite 

rigid baffle need to be stated in order to formulate the reflection inte­

gral. This is most conveniently done in spherical coordinates. There­

fore, vector differential operators and solutions to wave equations in 

spherical coordinates will be used for the present ; this is in lieu of any 

attempt to maintain consistency with tensor notation. 
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In order to simplify the subsequent mathematics as much as possible, 

it is convenient at this point to introduce the idea of a velocity poten­

tial. 

It can be recalled that the wave equations derived in Chapter II 

assumed an irrotational solution, that is, the curl of the resultant 

function is equal to zero. It is well-known that when the curl of a 

vector is zero, the vector can be represented as the gradient of a scalar 

function, which is often called a potential function. In virtually every 

case one can imagine it is easier to determine the potential function than 

it is the associated vector field quantity. Once the potential function 

is available the velocity is computed by an equation of the form given in 

(4.24). 

V = -74» (4.24) 

In this equation (p represents the standard potential function of acous­

tics, the velocity potential, and V is the particle velocity. 

It is not difficult to show by substitution and Integration that the 

velocity potential is governed by an equation of the same form as the 

vector wave equations which govern particle velocity and particle dis­

placement. The difference is that (j) being a scalar results in a scalar 

wave equation rather than a vector wave equation. Thus, the governing 

equation for (p is 

(4.25) 

c Bt"^ 

where the variable c is still interpreted as the propagation velocity. 



www.manaraa.com

60 

Equation (4.25), when evaluated in the spherical coordinate system, is in 

a convenient form to investigate the properties of a point source. 

An acoustic point source is usually viewed as a small pulsating 

sphere that radiates energy uniformly in all directions. Therefore, the 

appropriate solution to the wave equation describes an outgoing spherical 

diverging wave that is only a function of r. Assuming that the sphere is 

radiating exponentially damped sinusoidal pulses, the solution is 

GJ (wt-kr) £ _ IQTT ^ ^ X 

(j, = 

r c w" — — c 

0 t > -
c 

(4.26) 

where w and k are in general complex. (The development of (4.26) is 

analogous to the approach taken in arriving at equation (3.10).) A method 

is now needed to relate the magnitude of equation (4.26) to the local 

particle velocity found at that point. Once this is accomplished one can 

use the values of the particle velocity determined for the reflected wave 

at the surface to define a continuous array of point sources on the re­

flecting surface. 

In acoustics, the "strength" of any source is defined as the ampli­

tude of the scalar product of particle velocity and surface area, inte­

grated over a closed surface (29). In equation form this can be written as 

Q = / V ds (4.27) 
^ s n 

where v^ is the amplitude of the particle velocity normal to the surface 

and Q is the source strength. For a point source, the velocity vector 

would be radially directed and everywhere normal to the surface of a 
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sphere. Thus, the velocity vector can be determined by differentiating 

the velocity potential in the r direction. 

. :î° (1 + (4.28) 

r 

Since kr is much less than one for a sphere approaching the size of a 

point, the particle velocity at the surface of the sphere is approxi­

mately. 

If - 4^ eJ"' (4.29) 
r 

This equation then leads to an expression for v^ 

(f) 
V = ̂  (4.30) 
n ^2 

Upon integrating v^ over the surface of a sphere, the following relation­

ship between source strength and (j)^ results. 

•o - 4? (4-31) 

Finally, equation (4.26) can be expressed in the following form. 

' _3_ gj (wt-kr) r -lOTT < t < X 
4'rTr c w" — — c 

? = < (4.32) 

The expression given in equation (4.32) is for the velocity potential 

of a point source radiating in an infinite isotropic homogeneous medium. 

However, the hypothetical point sources of the reflected wave are radiat­

ing in the presence of a boundary. The effect of the boundary, as men­

tioned earlier, is taken into account by determining the velocity poten-
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tial of a point source radiating on the surface of an infinite, rigid 

baffle. The strength of such a source can be determined by integrating 

over a hemisphere since the presence of the baffle limits the radiation 

pattern to a hemispherical shape. This leads to a factor of 2TT in (4.31), 

thus for a surface point source the velocity potential is as follows: 

tt> = 

Q j(wt-kr) 
2irr 

0 

(4.33) 

t > 
IOTT 
w" 

+ 
c 

The transition from equation (4.33) to the reflection integral can 

now be accomplished in a straight forward manner. This transition re­

quires that each differential surface element be viewed as a point source 

radiating in the presence of an infinite, rigid baffle. An expression for 

the strength of a differential source follows immediately from equation 

(4.27). 

dQ = v^ds 

Thus, the differential contribution to the velocity potential is 

\^j(wt-kr)^^ r < t < 101T + r 

(4.34) 

2TTr c — — w 

^ (4.35) 

t > 
lOir 
w" 

+ -
c 

where v^ now indicates the amplitude of the normal component of particle 

velocity associated with the reflected wave. The subscript R indicates 

the reflected field. The total velocity potential for the reflected wave 
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can now be determined by integrating equation (4.35) over the surface. 

f (4.36) 

It should be noted in equation (4.36) that the limits on the range of t 

have not been included. This has been done for the sake of notational 

simplicity, however the limits dc apply and it should be assumed that they 

are implied in future expressions unless stated otherwise. 

It is now possible to express in terms of the incident field ex­

pression by introduction of the relationship between incident and re­

flected particle velocities which was developed in the section on specular 

reflection. Referring to Figure 5, the magnitude of the particle velocity 

for the reflected wave can be expressed as 

= RV^ (4.37) 

and the normal component of V would be cosa times V . 

v^ = RV^cosa (4.38) 

Thus, the strength of the point source located at that differential sur­

face element is 

dQ = RV^cosads (4.39) 

where a is the angle of incidence. This means that equation (4.36) can 

now be expressed as 

RV 
$R = ej(*t-kr)2QgQ,jg (4.40) 

The evaluation of the reflection integral, as given in equation 

(4.40), needs to be approached cautiously because of the implied limits on 

the values of t and r. Recall that the kernal of the integral is nonzero 
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Figure 5. Plane wave reflected by a differential surface element. 
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only for the following values of t. 

£ < t < iOl + £ (4.41) 
c — — w c 

Now let 

t = — (4.42) 
c 

and substitute this into equation (4.41) which following minor manipula­

tion of the inequality leads to the following limits on the value of r. 

(4.43) 

The implications of this unequality are illustrated in Figure 6. It im­

plies at a particular value of t, only that portion of the reflecting sur­

face between the spherical sheets s^ and s^ actually contribute to the 

velocity potential at point P. At a later instant in time it would be the 

portion of the surface between sj^ and s^ that determines at point P. 

The reflection integral can now be restated as 

RV 
~f e:k(rt-r)cosads r^-^lr<r^ 

4» 
= < 

R 
(4.44) 

r ft 

where kr^ has been substituted for wt. 

In the future, the expression given for in equation (4.44) will be 

referred to as a pulse reflection integral. This integral forms the basis 

of the summation formula developed in the next chapter to describe pulses 

reflected off irregular shaped objects when a finite size transmitter/ 

receiver element is involved. It should be pointed out that the summation 

formula differs from the pulse reflection integral in that the integral 
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Figure 6. Limits on range of r during surface integration. 
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only yields the velocity potential at a point. The introduction of a 

finite receiver element as opposed to a point receiver will require a 

spatial summation or integration of the velocity potential over the face 

of the receiver element. 
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CHAPTER V. SIMULATION OF PULSE-ULTRASOUND SYSTEMS 

The pulse reflection integral given at the end of Chapter IV still 

lacks sufficient generality to model finite size receiver elements. The 

problem could be remedied by deriving the reflection integral as a general 

function of r and then integrating the velocity potential over the surface 

of the receiver element. This approach leads to a fourth-order integral 

that would have to be evaluated for every value of t for which a solution 

is required. Another approach, which is more amenable to numerical 

methods, is to perform a translation of axis with respect to the reflect­

ing surface. This allows a calculation of the velocity potential at dif­

ferent points in space and permits the modeling of the receiver surface 

as a finite number of point receivers. However, this results in four 

orders of numerical integration to be performed every time the value of t 

is changed. These computational requirements make such an approach highly 

undesirable in modeling a pulsed ultrasound system. In terms of the in­

formation derived, it would not appear to be cost effective for a designer 

or user of such systems to implement this type of algorithm to simulate 

the operation of their system. 

Simplification is obviously desirable and can be made only with a 

loss of information and or accuracy. A decision on how much information 

or accuracy loss can be tolerated before an approximation becomes un­

acceptable is, as always, an engineering question which must be answered 

on a case by case basis. Typically, it appears that the information of 

greatest interest to users of pulsed ultrasound system is related to the 

relative magnitudes of the pulses appearing in an A-scan and their 



www.manaraa.com

69 

approximate duration. In addition, knowledge of these two parameters as a 

function of lateral translation and angular rotation of the transducer 

with respect to the surface is also desirable. 

The techniques introduced in this chapter are aimed at obtaining this 

information, in an approximate sense, with a technique that is both eco­

nomical and relatively simple to use and should yield results of suffi­

cient accuracy for general design work. 

Thus, the chapter will begin with the development of such an algo­

rithm and proceed to incorporate it into a model for a pulsed ultrasound 

system. The chapter will then conclude with an application of this model 

to a particular surface and compare the results with experimentally de­

rived results. 

Reflection Algorithm 

In this initial investigation, it will be assumed that the surface 

always possesses one plane of symmetry. This assumption will reduce the 

computational complexity while still allowing a test of the validity of 

the approach. 

The type of system which will be modeled in this work has a trans­

ducer with a single piezoelectric element which functions as both a trans­

mitter and receiver of ultrasonic waves; this element will be viewed as 

being composed of m times n points. It will produce a beam which irradi­

ates a segment of the reflecting boundary that will also be viewed as 

being composed of m times n elements. A segment on the reflecting surface 

will be designated by the values of the symbols p and q, while a segment 



www.manaraa.com

70 

of the receiver will be designated by values of i and y. An example of 

this system for designating differential elements of the receiver and 

differential elements on the reflecting surface is given in Figure 7. It 

will be seen shortly that the introduction of this notation is a key ele­

ment in using the pulse reflection integral to solve the type of pulse 

reflection problem depicted in Figure 7. 

The pulse reflection integral, as presented in Chapter IV, calculates 

the velocity potential at a fixed point. Conceptually, if each differen­

tial receiver element is viewed as a point, then the integral can be 

applied i*y times to compute the signal received by each point on the 

surface. The total received signal can then be viewed as a function of 

the sum of these individual returns. 

In order to calculate the pulse reflection integral at a particular 

point in space, using equation (4.44), it is necessary that all values 

used in the integral be stated with reference to a coordinate system 

located at that point. For example, referring to Figure 7, it is obvious 

that the distance to the element marked 4,4 on the reflecting surface is 

dependent upon the element on the receiver surface for which the velocity 

potential is being calculated. This type of dependency for the value of r 

is designated by using the symbol r(i,y,p,q), which simply means that one 

has to know which receiver element and which reflector element is being 

talked about before one can determine a value for r. Although the use of 

this type of symbolism does tend to complicate the appearance of any 

equation in which it is used, it does clarify the exact nature of the de-
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Figure 7. A specific source-surface reflection problem showing differen­
tial elements of transducer and reflector surface. 
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pendency of a particular variable and this clarification will serve to 

eliminate more confusion that it will cause. 

With these thoughts on notation in mind, the pulse reflection inte­

gral of Chapter IV will now be expressed in a summation formula suitable 

for computer implementation. The formula emphasizes the relative location 

dependency of the different variables in addition to emphasizing the fact 

that the formula allows one to compute for a single differential ele­

ment located at an arbitrary (i,y) position. 

There are several additional remarks that need to be made in refer­

ence to equation (5.1) to help clarify its meaning. 

To begin with, the statement that is a function of p and q might, 

at first, be a little perplexing. However, referring to the section on 

general considerations in Chapter IV it was stated that the incident field 

was going to be modeled as a particular type of plane wave whose amplitude 

would be allowed to vary from point to point on the wave front. The de­

tails of determining this empirically derived function will be discussed 

shortly but for the present it suffices to indicate that the amplitude 

of the incident wave can be referenced to a particular point on the 

reflecting surface. It should be pointed out that the location of 

the (p,q) element on the reflecting surface is dependent on the location 

of the transducer. Referring again to Figure 7, it can be seen that a 

lateral translation of the transducer would cause a different portion of 

m n R(p,q)Vj(p,q) 
jk(rt - r(i,y,p,q)) 

r ( i ,y ,p ,q)  

cosa(p,q)As(p,q) (5.1) 
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the reflecting surface to be irradiated and thus the (p,q) element would 

have a different location on the surface, in an absolute sense. 

In a similar way, the reflection coefficient, R, and the cosine 

function, cosa, are both functions of p and q since the direction of the 

incident wave is independent of i and y. In the case at hand, the inci­

dent wave will be propagating in the direction and it is the angle be­

tween and the normal to the surface at a particular point that speci­

fies a particular value for these two variables. Therefore, once the 

location of the transducer has specified the location of the p,q grid on 

the reflecting surface, these values can be computed independent of i and 

y.  

Next, it can be seen that the area of the differential element. As, 

is also independent of i and y and thus it is shown as a function of p and 

q only. 

The only variable left on the summation formula that actually proves 

to be a function of i, y, p and q is the distance r, the distance between 

a particular point source and a particular point receiver. The distance 

variable r^ is related to the range over which r can vary and is essen­

tially a function of time. Of course, once the value of i and y are fixed 

r becomes a function of only p and q and then the summation formula has 

exactly the same physical interpretation as the pulse reflection integral 

of Chapter IV. 

Before extending the present reflection formula to calculate the 

total receiver response, the variables r and will be expressed in 

rectangular coordinates. This change will allow the introduction of 
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certain approximations that will simplify the calculation of the total 

response. 

The variable r can be restated in the following terms, 

XIN(P) 
r(i,y,p,q) - cosYjjp(q,y)cosY^p(i,p) 

where x^^ is defined as the distance from an element in the pth row to the 

plane of the transducer. Note that due to the symmetry of the reflecting 

surface this variable is constant with respect to variations in q and thus 

it is shown as a function of p only. The angle in equation (5.2) is 

the angle between the line r(i,y,p,q) and the plane of symmetry. Refer­

ring to the example line shown in Figure 7, it can be seen that this angle 

is a function of q and y only. Next, the angle is defined as the angle 

between the x^^ axis and a projection of r onto the plane of symmetry. In 

the example shown in Figure 7, this angle would be zero. In many cases of 

practical interest and in the specific problem to be considered later, 

cosYjjpCOsYTp 1 (5.3) 

which implies that 

r = x^Cp) (5.4) 

Using a similar development for r^, it can be shown that 

""T t = — (5.5) 

which implies that the limits on the exponential function can be stated as 

follows. 

- %r (5.6) 
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In addition to these approximations for r and r^, the presence of 

symmetry also allows some simplification of the variables R, cosa and AS.  

The variations in the values of R and cosa are both due to variations in 

the angle between the incident wave and the normal to the surface at a 

particular point. Since the incident wave is always propagating in the 

direction and the normal to the surface is constant with respect to varia­

tions in q, these two variables are a function of just the value of p and 

not p and q. With these facts in mind, it can be seen that cosa(p) times 

As can be interpreted as the projection of AS onto an x^, x^ plane; this 

idea was illustrated earlier in Figure 5. Thus 

cosa(p)AS =  Ax2(p )Ax2(q) = AS'  

where AS' is the projection of AS onto the x^, x^ plane. 

These approximations can now be substituted into the reflection 

formula to yield the following equation. 

$ (i,y,t) Z ej^^^T-^lN(P))^ (p) % V (p,q)Ax (5.7) 
^ ^ p=l *1NIP/ ^ q=l i 

The summation over the q index will now be performed and a new variable 

B(p) defined. 

n 
B(p) = Z V (p,q)Ax (q) (5.8) 

q=l 

This leads to an expression for in terms of the variable p. 

$R<l,y,t) = ̂  ° ejk(xT-xiN(P)&x (p) (5.9) 
^ ^ p=l XlN^P' ^ 

It should be pointed out that the variable B(p) will prove to be the 

experimentally derived function describing the radiation characteristics 
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of a particular transducer. Its defining expression, given in equation 

(5.8), will be important in understanding exactly how these measurements 

should be made. The details of the measurements will be given in the 

next section, which will discuss the modeling of a particular pulsed-ultra-

sound system. 

The expression for the velocity potential given in equation (5.9) now 

makes it a simple matter to calculate an approximation to the total re­

sponse of the receiver in terms of a total velocity potential Since 

none of the terms in equation (5.9) are a function of i and y, a summation 

over these two indices leads to a simple multiplication of equation 

(5.9). 

L(t) = E Z L(i,y,t) = E gjk(xT-xiN(P)). (5.10) 
^ i=l y=l ̂  p=l XlNlP' 2 

Equation (5.10) is in a form that admits to a relative simple physi-
I 

cal interpretation which is helpful in understanding its implications and 

limitations. 

Referring to Figure 8, the problem has been reduced to a single sum­

mation over a differentially wide strip of reflecting surface parallel to 

the plane of symmetry of Figure 7. In this particular illustration, the 

incident field can be viewed as being produced by a differentially wide 

transmitter strip where the magnitude of the incident wave is described by 

the function B(p). Recall that B(p) is actually a "weighted" value whose 

magnitude describes the sum of the incident wave amplitudes for all q 

elements located in the pth column. Therefore, the product of 

B(p)R(p)Ax2(p) describes the magnitude of a "weighted" point source 
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located at the position of the particular differential element. Each one 

of these sources then radiates a signal which arrives at the plane of the 

transducer phase shifted and diminished in amplitude by an amount 

^lnVx-„. It is the sum of each one of these contributions which 
IN 

provides an estimate of the total received signal, (fe^Ct), at a particular 

instant of time. At a later time t, the value of Increases according 

to (5.5), and the limits on change according to (5.6). Thus the re­

flection formula is actually summed over a different part of the reflect­

ing surface. These changes in the values of x^ and the range of x^^ show 

the time dependent nature of the reflection formula. 

In summary, it can be said that the diameter of the transducer de­

fines the limits on the value of x^ while the duration of the radiated 

pulse and time defines the limits on the value of x^ (i.e., x^ and 

x^ - lOïï/k"). The source of the reflected wave is always located on the 

portions of the reflecting surface found within the range of these values. 

As mentioned earlier, the reflection formula which has just been 

developed can be used to form the heart of an algorithm to simulate the 

operation of apulsed-ultrasound system operating in the A-scan mode. The 

purpose of the next section is to develop such an algorithm for a particu­

lar system. The last section of this chapter will then compare results 

generated by the algorithm with experimental result obtained for a spe­

cific reflecting surface. 
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Ultrasound System Model 

In order to facilitate this discussion on the development of a system 

model, a general block diagram of an A-scan system has been prepared and 

is presented in Figure 9. The development of a system model will consist 

in representing each one of the blocks with an appropriate expression and 

then linking these expressions together mathematically. 

The representation of block one, the radiated field, has been dis­

cussed earlier. It amounts to the determination of an empirically derived 

function to represent the variable B(p). In the process of discussing the 

technique used to obtain B(p), a convenient method will be found to repre­

sent the entire system through block four. 

An approach that is commonly taken to obtain information about the 

radiation patterns of a transducer involves the use of a small reflecting 

sphere. The sphere is located at a known point in the radiated field and 

is used to reflect a portion of the incident wave to a receiver element. 

The magnitude of the reflected wave is considered to be proportional to 

the magnitude of the incident wave at that point. An approach similar to 

this will be used to determine values of B(p). However, the defining ex­

pression for B(p), equation (5.8), represents a numerical line integral 

taken along a line normal to the plane of symmetry. This integral can be 

viewed as representing the strength of a line source. In order to approx­

imate this situation experimentally, a long slender reflecting strip was 

used to reflect a signal proportional to B(p) back to the receiver. At 

the receiver, the signal was measured at the first convenient point; this 

point proved to be the output of the transducer (i.e., block 4, Figure 9). 
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Figure 9. Block diagram of typical A-scan, pulsed-ultrasound system. 
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Thus, the signal as measured is a voltage that is related to B(p) through 

blocks two, three and four. That is, a narrow strip of the incident field 

is reflected back to the transducer and is converted from mechanical to 

electrical energy before being detected at the output of the transducer. 

There now remains the problem of showing how this electrical signal can be 

related to values of B(p). 

Consider a situation in which a reflecting strip d units wide is 

being used to map the characteristics of the incident field. The strip is 

wide enough so that the reflection formula, equation (5.10), can be used 

but narrow enough to allow five or six measurements across the diameter of 

the field. The reflecting strip is made out of metal, while the propagat­

ing medium is water. This situation approximates a "perfect reflector" 

with a reflection coefficient of one being used in a "lossless medium," 

water. Since B(p) is a magnitude, the maximum value of the reflected 

wave is sought. After setting AxgCp) equal to d and x^^ equal to x^, the 

distance to the strip, equation (5.10) reduces to 

1^1 = B(p) (5.11) 
s 

where p now represents the position of the center of the strip. It is 

assumed that in general, |$^| can be related to the maximum value of the 

output voltage of the transducer by a constant of proportionality. This 

constant would represent the effects of blocks three and four. Figure 9. 

Letting V^(p) represent the transducer voltage as a function of the posi­

tion of the strip, one can write 

V^(P) = ^ H^B(p) (5.12) 
8 
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where is the transducer constant. Equation (5.12) can now be used in 

conjunction with (5.10) to develop a reflection formula that yields an 

answer in terms of transducer output voltage. 

The constant represents a general relationship between total 

velocity potential at the face of the transducer and transducer output 

voltage. Therefore, multiplying equation (5.10), the reflection formula, 

by yields an expression for the output voltage of the transducer as a 

function of time. After multiplying (5.10) by H^, equation (5.12) can be 

used to represent the quantity H^B(p) in terms of constants and the em­

pirically derived function V^(p). This process leads to the following 

equation, 

m R(p)V_(p) 
(5.13) V^(t) = 

p=l IN^P' 

where V^(t) represents the output of block four. Figure 9. 

The next step in the modeling process requires the representation of 

block five the amplifier gain. It will be assumed for the present that 

the amplifiers are a broadband design which does not change the shape of 

the pulse spectrum. It is, however, necessary to allow the gain to be a 

function of voltage since many pulsed-ultrasound systems use logarithmic 

amplifiers. For the present, the amplifier gain will be represented by a 

function G(v). This function would have to be determined experimentally 

for a particular system or in the case of design work it would be a design 

variable. An example of a nonlinear G(v) will be discussed in the next 

section on experimental results. 
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The final step necessary to complete the system model is to represent 

the half-wave rectifier and envelope detector of block six. Schematical­

ly, this block is represented by the circuit shown in Figure 10(a). The 

diode performs the half-wave rectification while the parallel RC network 

performs the envelope detection. The shape of the output pulse, P(t), is 

essentially determined by the magnitude of the returns and the RC time 

constant of the detector. 

The input to this block is represented by the function G(V^(t)) which 

is the results of equation (5.13) after being amplified. Since equation 

(5.13) is being evaluated on a digital computer, the output can be repre­

sented as a series of discrete values in time. This idea is represented 

by the solid lines in Figure 10(b), where the height of the lines repre­

sents the magnitude of the return at a particular Instant in time. In 

the interval between these pulses, At, the shape of the pulse is deter­

mined by the RC time constant of the circuit. 

The choice of a value for the RC time constant is somewhat arbitrary, 

but typically a value equal to the exponential damping on the radiated 

pulse is chosen. In this particular case then, an analog signal is ob­

tained from the discrete values given by G(V^(t)) by smoothing with a 

"W" t 
function of the form e 

Application of Technique 

In order to investigate the validity of the approach described in 

this work, an experiment was designed which would allow direct comparison 
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Figure 10. Rectification and envelope detection, (a) Half-wave rectifier 
and detector of A-scan pulsed-ultrasound system, (b) Repre­
sentative output from block 6 generated by simulation program, 
showing specific pulses and corresponding envelope. 
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of experimentally measured and computer generated magnitude time plots of 

a particular system surface combination. 

Overview 

The experiment consisted of scanning the surface shown in Figure 11 

with a pulsed ultrasound system connected to a Metrix PT50212 transducer 

with a crystal diameter of approximately 1.4 centimeters. The surface was 

made out of sheet aluminum approximately 1 millimeter thick and was 

immersed in a water bath at a distance of 12.58 centimeters from the face 

of the transducer at its closest poi?S. The resonant frequency of the 

transducer is listed by the manufacturer as 2.25 megahertz. The output of 

the ultrasonic receiver was connected to a wideband oscilloscope to yield 

a magnitude versus time plot of the reflected pulses. These returns were 

then photographed at four different locations of the transducer with re­

spect to the surface. The first return was for the transducer centered 

over the surface with the face of the transducer parallel to the base of 

the reflector. Subsequent photographs were made with the transducer 

laterally displaced with respect to the center point. The transducer was 

then returned to its center location and two additional photographs were 

made with the transducer rotated to two different angles. 

After obtaining the experimental data the system was then used to 

obtain the information needed for the computer model. This consists of 

determining values for w", V^(p), and G(v). 

A good approximation to w" can be obtained by observing the signal 

reflected off a plane reflector on an oscilloscope. This would be the 

signal before any nonlinear amplification, rectification and detection. 
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Figure 11. Perspective of trial surface with specific dimensions. 
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The signal is a reasonable facsimile of an exponentially damped sinusoid 

and a value for w" can be read directly off of the display. 

Values for V^(p) were acquired using the technique discussed earlier 

and it was found, in this particular case, that the data could be quite 

accurately represented by an exponential function of p. 

Finally, the transducer was disconnected from the receiver and the 

input driven by a variable amplitude sine wave generator at 2.25 megahertz 

while the output of the three stage amplifier section was monitored on an 

oscilloscope. Values for G(v) were then obtained and a piecewise fit of 

three different functions was finally arrived at as an adequate represen­

tation of the receiver gain characteristics. 

The end results of all of the aforementioned measurements are listed 

in equation form below. 

w" = w'/2.22 (5.14) 

V_(p) = 5.8687 e-'0882302p (5.15) 

150v V ̂  .0400 

G(v) = ^11.5774v'lG76091 .0400 v < .0750 (5.16) 

SUOOOOv"0249158 ,0750 < ^ 

All of the curve fitting was done on a Hewlett-Packard Model 67 calculator 

using their curve fitting program SD-03A. 

The next step taken towards implementing the computer model was to 

fix the origin of the coordinate system and use three contiguous functions 

to describe the surface of Figure 10. Segment I was represented by a 

hyperbolic cylinder while segments II and III were represented by planes. 

It should be noted that this method was chosen as the most expedient way 
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of representing this particular surface, but it should not be construed 

that this is the only way or the most general way to represent an irregu­

lar surface. Equation (5.17) is the mathematical description of the re­

flecting surface used in the program. 

f(x) = < 

.094378(x - .01583)1/2 .1258 < x < .1268 

,10000% - .011180 .1268 < x < .1518 (5.17) 

.1518 X = .1518 

The final factor that needs evaluating before implementation of the 

computer algorithm is the reflection factor R. With the aluminum defined 

as region two and the water as region one values for the acoustic imped­

ance are 

Zg = 17 X 10^ kg/m^-sec 

6 2 
z^ = 1.5 X 10 kg/m -sec 

These values were obtained from Table 1.1, page 14 of P. N. T. Wells' 

book Biomedical Ultrasonics (30). These numbers were substituted into 

equation (4.16) to obtain values of R for various angles of incidence 

and were stored as a table of values. 

Computer program 

A computer program was written to solve the radiation-reflection 

problem that has been described in this section. The program was opti­

mized to solve this particular problem and no effort has been made to 

generalize it. Therefore, the only information that will be included 

here, with reference to the program, is a discussion of the approach taken 
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in solving the problem. This material is intended to serve as a starting 

point for anyone who might wish to write a general program. 

Conceptually, the program can be broken into three parts. The first 

would involve the evaluation of equation (5.13), the reflection formula. 

The second would require using the value of as an argument in G(v), 

equation (5.16), to determine the output from the amplifier section. And 

the third section would require calculating the effect of rectification 

and envelope detection. 

The discussion begins with an explanation of the approach used in 

evaluating the reflection formula. This is best done with the aid of 

Figure 12. Figure 12 represents a cross section of the transducer and 

reflecting surface taken in the plane of symmetry. The shaded area 

represents the area occupied by the radiated pulse, which is propagating 

toward the surface with velocity c. At any Instant of time the wave 

front is located at the position t/c, which is equal to x^, and the trail­

ing edge of the wave front is located at x^ - lOir/k". It is obvious from 

the diagram that no reflected pulse is created for value of x^ less than 

x^. Now let x^ equal x^. In this case, the only nonzero contributions 

to V^(t) would be when x is equal to x^. After summing over the p index, 

one would have the total reflected signal from that portion of the sur­

face. This return will be designated as the return from position zero 

(RT(0)). Next increment the value of to x^ + Ax. One could now sum 

all contributions from differential elements located at position x equal 

to x^ + Ax, called return at position one (RT(1)), plus all returns from 

elements at x equal to x^. However, this later contribution was calcu-
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Figure 12. Cross section of reflecting surface and source showing varia­
bles associated with simulation program. 
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lated in the previous step as RT(0), the only difference is that the term 

needs to be multiplied by It is easy to see at this point that for 

equal to + 2Ax, the total return would be as follows. 

= RT(2) + RT(l)e^^^* + RT(0)ej2kAx (5.18) 

It follows that in the general case 

= RT(i)ej° + RT(i - + RT(i - 2)ej2kA% + &?(! _ 3)ej3kAx 

+ ... (5.19) 

where the sum would continue until nk"Ax was greater than lOir/k", where n 

is some integer. The value of i used in (5.19) would correspond to some 

position number and in some cases values for RT(i) may be zero. Thus, by 

using the circulating sum expression, equation (5.19), returns corre­

sponding to certain distances from the source can be calculated and stored 

in a column matrix. 

It can also be seen from Figure 12 that it is a relatively simple 

matter to simulate lateral translation of the source. In the example 

shown in the figure, the source has been moved from the position a - a* 

to b - b' . The effect of this translation is simply to define a different 

portion of the surface over which (5.13) must be evaluated. Such a 

translation often creates areas of overlap with segments of the surface 

that have been previously dealt with in other calculations. Thus in the 

interest of programming efficiency, it is helpful to separate the calcula­

tions into those that are dependent upon the position of the source and 

those that are not. 
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An examination of equation (5.13) and Figure 12 shows that the term 

R(P)AX2(P)/X is independent of the lateral position of the source. This 

makes it convenient to calculate these terms only once for the entire 

surface and store them in a matrix along with their x^, x^ coordinates. 

Next the position of the source can be specified in terms of an upper and 

lower limit on the range of x^. Once this is done, specific values of 

V^(p) can be matched with values of R(p)Ax2(p)/x, multiplied together, 

and stored back in the matrix along with values of x^ and x^, the position 

of the differential element. This information can then be used with the 

circulating sum expression to obtain values of V^(t). The only con­

straint put on the sum expression is to make sure that the location of the 

differential elements are within acceptable limits on and Xg. 

Once values of V^(t) are available, they can be used as the argument 

on the G(v) function to calculate the output of the amplifier section. 

Next, all negative values are replaced by zero to simulate half wave 

rectification. And finally, the specific values of output voltage can be 

plotted on a graph and the points fitted together with a function that 

simulates the effect of the envelope detector. 

The description that has just been completed constitutes the basic 

program. There was a small modification that was added to it to simulate 

the effect of small angular rotation of the source around the x^ axis. 

The most pronounced change created by a small angular rotation of the 

source is to irradiate a different segment of the surface. This rotation 

was related to an equivalent translation which would cause the same seg­

ment of the surface to be irradiated. The appropriate values of V^(p) and 
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R(p)Ax2(p)x were then matched together. This constituted the description 

of the source for the reflected wave. However, the evaluation of V^(t) 

was conducted as if the transducer was in its original location. That is, 

the limits on were obtained by using the projection of the transducer 

onto the x^, x^ plane. 

The method that has just been outlined seirves as a basic overview of 

the computer simulation program. There are, however, some subtleties that 

one might wish to consider in writing a general program that are related 

to limitations of the physical optics approach. One of these limitations 

needs to be mentioned at this point, since it did play a part in writing 

the program used to generate the results of the next section. 

It has been noted by several different authors that care must be 

taken in the physical optics approach when the angle of incidence becomes 

quite large. Meecham (28) points this out in his paper on the validity of 

the physical optics approach by noting that this condition can occur when 

determining the wave reflected off an irregular surface. It is stated 

that care must be exercised in retaining contributions to the reflected 

wave when the angle of incidence is large. Kouyoumjian (31) makes a 

similar point in his paper on asymptotic high-frequency methods. In a 

book entitled The Scattering of Electromagnetic Waves from Rough Surfaces, 

Beckmann and Spizzichino (27) also note the problem. They relate it 

to a concept discussed earlier in this chapter. From this point of 

view, it is stated that the surface needs to be rough, according to the 

Rayleigh Criterion, in order for the physical optics method to yield good 

results. As the angle of incidence increases the surface appears to be­
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come smoother and the reflected energy tends to be radiated in the direc­

tion of specular reflection only. This idea is, of course, contrary to 

the physical optics implication that the energy radiates uniformly in all 

directions. 

With this idea in mind it would seem prudent to ignore the return 

from a differential element if the angle of incidence becomes too large at 

that particular point. In fact this was done in the specific program used 

in this thesis work, by leaving out all returns from differential elements 

with an angle of incidence greater than eighty degrees. The choice of 

this particular value constituted an educated guess. The only method 

available for calculating such an angle requires the evaluation of the 

Rayleigh Criterion and the information needed to perform this calculation 

is very difficult to obtain. 

The consideration of surface roughness completes the general dis­

cussion on all of the factors used in writing the computer program. The 

next section discusses the results obtained by applying this program in 

the specific situation described earlier. 

Results 

A comparison of the theoretical and experimental results shown in the 

next few figures should start by reviewing the objectives of the program. 

It should be remembered that the entire algorithm was optimized to produce 

computational simplicity and accurate prediction of a few essential 

parameters. These parameters are: position of the pulse in the A-scan 

plot, approximate pulse duration and magnitude information. With these 

thoughts in mind, the results essentially speak for themselves. 
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Figure 13. Output from pulsed-ultrasound system, (a) A-scan output for 
transducer centered over the surface shown in Figure 11 at a 
distance of 12.75 cm from the closest point. Horizontal axis 
calibrated at 7.5 cm/div., vertical axis calibrated at 5 
v/div. (b) Corresponding computer plot for predicted A-scan 
output. 
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Figure 14. Output from pulsed-ultrasound system. (a) A-scan output with 
transducer laterally displaced .275 cm from position indicated 
in Figure 13. Calibration same as Figure 13. (b) Correspond­
ing computer plot for predicted A-scan output. 
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Figure 15. Output from pulsed-ultrasound system, (a) A-scan output with 
transducer laterally displaced .430 cm from position Indicated 
in Figure 13. Calibration same as Figure 13. (b) Correspond­
ing computer plot for predicted A-scan output. 
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Figure 16. Output from pulsed-ultrasound system. (a) A-scan output with 
transducer laterally displaced .948 cm from position indicated 
in Figure 13. Calibration same as Figure 13. (b) Correspond­
ing computer plot for predicted A-scan output. 
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Figure 17. Output from pulsed-ultrasound system, (a) A-scan output with 
transducer centered over the surface at a distance of 12.75 cm 
from the closest point. Transducer mounted at the end of a 
mechanical arm 10.8 cm long and arm rotated 1 degree about xg 
axis. Calibration same as Figure 13. (b) Corresponding com­
puter plot. 
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Figure 18. Output from pulsed-ultrasound system. (a) A-scan output with 
transducer rotated 2 degrees; otherwise conditions identical 
to Figure 17. (b) Corresponding computer plot. 
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Referring to the experimental results in Figure 13, the distance to 

the first pulse can be estimated from the assumed propagation velocity of 

1500 m/sec and the sweep rate of 50 y/sec per division. This yields a 

value of 25.5 cm shown on the computer plot. The pulse width in the 

experimental results are approximately 1.5 cm for the left hand or lead 

pulse and 1.8 cm for the right hand or trailing pulse. These values com­

pare quite well with the computer generated values of 1.6 cm. However, a 

comparison of these values on subsequent figures shows a steadily in­

creasing error for the trailing pulse. The source of this error is 

thought to be related to the tendency the amplifier section displayed to 

oscillate when subject to large signal inputs. This condition arose be­

cause the particular system used was designed to operate in a very lossy 

medium such as tissue, instead of water, which has very low losses. This 

explanation would account for the increase in pulse duration and for the 

trailing pulse as the transducer is shifted laterally. This shift results 

in larger signals being returned from the base of the reflecting surface 

and thus a more sustained oscillation. This increase in magnitude does 

not really show itself in the experiment or in the computer results due to 

the logarithmic nature of the amplifier gain. 

The magnitude results, on the other hand, show far better agreement 

in general. The calibration for the vertical axis on the experimental 

results is 5 volts/div. Thus it can be seen that the computer generated 

values are always within a couple of tenths of a volt of the experimental 

values. The maximum error occurred for two degrees of angular rotation 

and amounts to about four-tenths of a volt. 
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In general, it can be said that the results from this particular 

application of the algorithm shows considerable promise for the simulation 

of A-scan systems in a more general environment. There does remain, how­

ever, a considerable amount of experimental work to be done before com­

plete confidence in the technique would be warranted. 
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CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS 

It is appropriate, at this point, to review the theoretical and 

empirical results presented in this thesis in light of the goals set forth 

in the introduction. 

The introduction stated that the main objective of the thesis was the 

development of an analytical technique to simulate the operation of an 

A-scan, pulsed-ultrasound system. Subsequent statements elaborated on the 

idea by specifying model parameters for the simulation technique. It 

was stated that thu technique should be computationally simple, capa­

ble of simulating lateral translation or small angular rotation of the 

transducer and be applicable to problems involving an irregularly shaped 

reflecting surface. These requirements precipitated an additional prob­

lem. The key to simulating a pulsed-ultrasound system is solving the 

Inherent pulse reflection problem. However, the desired characteristics 

for the simulation technique ruled out the use of any existing pulse re­

flection algorithm. Thus, the stated objective for the thesis required 

the development of a new pulse reflection algorithm before the simulation 

problem could be addressed per se. For this reason, it seems appropriate 

to discuss the conclusions related to the pulse reflection algorithm some­

what apart from the simulation program, even though the former is an 

integral part of the latter. 

The pulse reflection formula, in its most general form, is given in 

equation (4.44). The evaluation of this formula, for a specific r^ 

yields a value for the velocity potential of the reflected wave at a 

single point in space and time. The formula can be conveniently used to 
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handle a wide variety of pulse reflection problems, providing that the 

pulse shape can be described as an exponentially damped sinusoid. How­

ever, the author believes that the basic idea behind the development of 

(4.44) could be expanded to virtually any pulse shape that might arise in 

a physical situation. Such a generalization of the technique would 

probably be done most easily using a Green's function approach to formu­

late the reflection integral. The pulse reflection formula or any gen­

eralization of it is inherently capable of yielding an "exact" description 

of the reflected pulse. This point needs to be emphasized because the 

computational form of the formula was an approximate evaluation, optimized 

for pulse magnitude and duration not pulse shape. This is a reasonable 

thing to do when modeling A-scan systems, but most pulse reflection prob­

lems require information about pulse shape and thus this inherent capa­

bility needs to be emphasized. 

While it is important to realize the inherent capabilities of the 

pulse reflection formula it is also important to appreciate its limita­

tions. The formula is a physical optics approach to the reflection prob­

lem. The physical optics approach, in itself, yields approximate solu­

tions to boundary value problems involving certain types of differential 

equations. A complete discussion of the limitations of physical optics 

would be quite lengthy and is not appropriate at this point. It suffices 

to say that potential users of the techniques presented in this thesis 

would do well to acquaint themselves with some of the literature in this 

area. Some of the references listed at the end of this work could serve 

as a starting point in such an effort. Perhaps one of the most helpful 
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ideas to keep in mind when using any physical optics method can be found in 

a quote from Electromagetic and Acoustic Scattering by Simple Shapes (32). 

Physical optics is probably the most widely used method for esti­
mating the scattering. It is particularly convenient for machine 
computation, and because of this, the recent years have seen a 
growing tendency to credit physical optics with an accuracy which 
is in no sense justifiable. It is, therefore, unfortunate that 
necessary and sufficient conditions for the validity of the method 
cannot be stated, and indeed, several of the most fruitful applica­
tions have been in circumstances where prior justification would 
be difficult. 

In short, conclusions on the validity of any physical optics type equa­

tion must always be stated in somewhat of a tentative fashion. This is an 

especially good point to remember, as conclusions on the applicability of 

the simulation program are stated. 

The application and experimental verification of the simulation 

program presented in this thesis should be viewed as the results of a pre­

liminary investigation. Considerable time and effort was expended in de­

veloping the theory behind the simulation program and in writing the pro­

gram itself. Additional time could be, and should be, spent in writing a 

general program as a prelude to more extensive experimental investiga­

tions. However, some initial work needed to be done to see if such addi­

tional effort seemed warranted. 

One firm conclusion that can be drawn as the result of this thesis 

is that future experimental work is certainly warranted. The object of 

these experiments would be to establish limits on the types of reflection 

problems that can be solved using the techniques developed in this work. 

At present, the author believes that the simulation program, or a varia­

tion of it, can be used to solve virtually any reflection problem that 
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might be of interest. In addition, it is felt that this approach to 

solving the problem would be as expedient as any available. However, 

until further experimental work is done, these remarks must remain as a 

statement of opinion rather than fact. 

As a first step in establishing experimental limits on the simulation 

program, the results presented in this thesis need to be reviewed to see 

what specific conclusions can be drawn. In order to facilitate this dis­

cussion, the conclusions will be categorized into one of three areas. 

That is to say, they will be based upon information related to sur­

face shape and size, or distance between source and object, or nature of 

the material properties of the propagating and reflecting media. The 

discussion begins with a brief look at the reflecting surface. 

One of the more important considerations in testing the simulation 

program is the choice of the reflecting object. It is difficult at best 

to choose a representative irregularly shaped object. In fact the choice 

of surface shape, in this case, was primarily dictated by external fac­

tors, factors related to the design of an A-scan ultrasound system not 

associated with this work. Nevertheless, the surface does incorporate 

many facets which are desirable in a preliminary investigation. Some of 

these facets are: (1) large variations in surface slope, (2) large varia­

tions in radius of curvature, (3) substantial variation in distance along 

the axis of propagation from the closest to the farthest point on the ob­

ject, (4) relatively easy to describe mathematically. The key character­

istics the surface did not include were: substantial areas of constant, 

moderately sloped surface and substantial areas of gently curved surface. 
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Thus, one could conclude that surfaces that possess the characteristics 

listed in points one through three above can be approached with some con­

fidence. 

In keeping with the theme of a preliminary investigation, the simula­

tion program was tested with the object located at a "moderate" distance 

from the source. The choice of this distance yielded two substantial 

benefits. First, the distance assured that the magnitude of the incident 

wave could be described by a well-behaved function. Second, the distance 

allowed the approximation introduced in equation (5.3) to be used. 

Equation (5.3) requires that the product of two cosine functions, 

cosy^p and cosy^^, be approximately equal to one. The fulfillment of this 

requirement allowed a great reduction in the computational complexity of 

the program. In addition, all of the equations presented after (5.3) 

assume that this requirement is met. This means that a more complex 

version of the simulation program must be written before one is ready to 

use the theory at close range. It should be emphasized that this exten­

sion to closer ranges is a computational problem not a theoretical one. 

As a point of reference, a lower boundary on the product of the two cosine 

functions is calculated for the particular problem considered in this 

thesis. It was found that the value never went below 0.9881. 

As mentioned earlier, the moderate distance was also advantageous in 

describing the magnitude of the incident field at various points across 

the beam diameter. In this particular case it led to a simple exponential 

expression. However, it is well known that this description becomes con­

siderably more complex the closer one gets to the transducer face. The 
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picture also changes much more rapidly as a function of distances at these 

closer ranges. Nevertheless, there is no reason to believe that the 

necessary incident field description cannot be obtained. It would, how­

ever, require a slightly different, more sophisticated approach than the 

one used in this thesis to derive the description. Recommendations, along 

this line, will be made in the next section. 

The types of materials used in the experimental work presented in the 

thesis were aluminum and water. This choice led to very high values for 

the reflection coefficient; the range was 0.8 to 1. There is no antici­

pated difficulty with the use of the program on boundaries that yield 

lower values for the reflection coefficient. There are, however, some 

difficulties that could arise if one uses equation (4.16) as an approxima­

tion to equation (4.23). 

Equation (4.16) is a formula for the reflection coefficient when 

neither medium can support shear waves. Equation (4.23) is a formula 

for the reflection coefficient when both mediums can support shear waves. 

Unless the propagation velocity of the shear waves is many times smaller 

than the propagation velocity of the longitudinal waves, equation (4.23) 

should be used. Otherwise substantial error in predicting the magnitude 

of reflected pulses may occur. 

Recommendations 

All of the recommendations for future work essentially fall into one 

category, that of additional experimental work. 
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The object of these experiments would be the determination of limits 

on the types of reflection problems that can be successfully handled using 

the simulation program. This work would require the writing of a general 

computer program to handle the many different surfaces that might be used 

in the experiments. In addition, a fast and efficient method of obtaining 

a digitized description of the reflecting surface would be needed. 

As mentioned earlier, a more accurate method of determining V^(p) is 

also needed. It is thought that this could be accomplished by using a re­

flecting circular cylinder. The radius of the cylinder could be chosen as 

small as necessary to achieve the lateral resolution needed. Since the 

solution for scattering off cylinders is readily available in closed form, 

and exact relationship between V^(p) and B(p) could easily be established. 

The three factors that have just been mentioned constitute a con­

siderable amount of work, but are a necessary prelude to the start of 

extensive experimental work. 

The choice of the surfaces used in the experiments should follow the 

guidelines laid out in the conclusions. That is, the emphasis should be 

on gently curved and moderately sloped surfaces. 

The materials used in the propagating and reflecting medium should 

yield small values for the reflection coefficient at normal incidence. In 

addition, materials with appreciable shear velocities should also be 

sought. This would allow a study of the effect of using equation (4.16) 

when the materials involved would dictate the use of equation (4.23). 
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Summary 

In summary, it is felt that a significant step forward has been made 

in developing a tractable technique for predicting pulses reflected off 

irregularly shaped objects and in modeling pulsed-ultrasound systems. The 

primary emphasis in the development has been on the prediction of pulse 

magnitude and duration. However, theoretical ground work has been laid 

for the development of algorithms to predict pulse shape as well as 

magnitude and duration. 
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